
SAS—计算K-S值及画图
近来,时于夜半下雨,也常在梦里被雨扰醒。究其原因,也是因为近来工作无趣,本身也只喜欢写写SAS或Python代码,做模型,可近来却连数据权限都没有,万灰俱灭。雨声轻轻,却也容易愁闷得睡不着。想着要去外包,却因自己的犹豫不决也没有去成。
好了,不说废话了。昨天有人在微信上问KS的计算方式。今天介绍一下KS值吧。
先看一段程序:
data logistic;
input accident age vision drive;
datalines;
1 17 1 1
1 44 0 0
1 48 1 0
1 55 0 0
1 75 1 1
0 35 0 1
0 42 1 1
0 57 0 0
0 28 0 1
0 20 0 1
0 38 1 0
0 45 0 1
0 47 1 1
0 52 0 0
0 55 0 1
1 68 1 0
1 18 1 0
1 68 0 0
1 48 1 1
1 17 0 0
1 70 1 1
1 72 1 0
1 35 0 1
1 19 1 0
1 62 1 0
0 39 1 1
0 40 1 1
0 55 0 0
0 68 0 1
0 25 1 0
0 17 0 0
0 45 0 1
0 44 0 1
0 67 0 0
0 55 0 1
1 61 1 0
1 19 1 0
1 69 0 0
1 23 1 1
1 19 0 0
1 72 1 1
1 74 1 0
1 31 0 1
1 16 1 0
1 61 1 0
;
proc logistic data=logistic outest=model;
model accident(event='1')=age vision drive/selection=stepwise
sle=0.05 sls=0.05 outroc=roc;
output out= pred p=p1 ;
run;
proc npar1way data=pred noprint;
class accident;
var p1;
output out=ks;
run;
以上是一段常规的计算KS值。
首先要了解什么是KS值,K-S值(kolmogorov-smirnov curve)将总体进行n等分组并按照违约概率降序排列,计算每一等份中违约与正常百分比的累积分布,绘制出两者之间的差值就是K-S曲线。其中K-S曲线中的最大值即为K-S统计量,取值范围在0到1之间。
以下是计算K-S值及画图的宏程序:
/**data:逻辑回归后包含验证结果的数据集,var:违约概率变量,status:分类变量,data1:切分后的变量,Mks:最大ks值,M:分组组数**/
%macro KS(data, var, status, data1, Mks,M);
proc sort data=&data;
by &var;
run;
proc sql noprint;
select sum(&status) into:P from &data;
select count(*) into :Ntot from &data;
quit;
%let N=%eval(&Ntot-&P);
data &data1;
set &data nobs=NN;
by &var;
retain tile 1 totP 0 totN 0;
Tile_size=ceil(NN/&M);
if &status=1 then totP=totP+&status;
else totN=totN+1;
Pper=totP/&P;
Nper=totN/&N;
if _N_ = Tile*Tile_Size then
do;
output;
if Tile <&M then
do;
Tile=Tile+1;
SumResp=0;
end;
end;
keep Tile Pper Nper;
run;
data temp;
Tile=0;
Pper=0;
NPer=0;
run;
Data &data1;
set temp &data1;
run;
data &data1;
set &data1;
Tile=Tile/&M;
label Pper='Percent of Positives';
label NPer ='Percent of Negatives';
label Tile ='Percent of population';
KS=NPer-PPer;
run;
proc sql noprint;
select max(KS) into :&Mks from &data1;
run; quit;
proc datasets library=work nodetails nolist;
delete temp ;
run;
quit;
%mend;
%macro PlotKS(data1);
symbol1 value=dot color=red interpol=join height=1;
legend1 position=top;
symbol2 value=dot color=blue interpol=join height=1;
symbol3 value=dot color=green interpol=join height=1;
proc gplot data=&data1;
plot( NPer PPer KS)*Tile / overlay legend=legend1;
run;
quit;
goptions reset=all;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26