
R语言-如何处理违背回归假设的问题
我们已经花费了不少篇幅来学习回归诊断,你可能会问:“如果发现了问题,那么能做些什么呢?”有四种方法可以处理违背回归假设的问题:
删除观测点;
变量变换;
添加或删除变量;
使用其他回归方法。
下面让我们依次学习。
8.5.1 删除观测点
删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合。若离群点或强影响点仍然存在,重复以上过程直至获得比较满意的拟合。
不过,我对删除观测点持谨慎态度。若是因为数据记录错误,或是没有遵守规程,或是受试对象误解了指导说明,这种情况下的点可以判断为离群点,删除它们是十分合理的。
不过在其他情况下,所收集数据中的异常点可能是最有趣的东西。发掘为何该观测点不同于其他点,有助于你更深刻地理解研究的主题,或者发现其他你可能没有想过的问题。我们一些最伟大的进步正是源自于意外地发现了那些不符合我们先验认知的东西(抱歉,我说得夸张了)。
8.5.2 变量变换
当模型不符合正态性、线性或者同方差性假设时,一个或多个变量的变换通常可以改善或调整模型效果。变换多用Y λ 替代Y, λ 的常见值和解释见表8-5。
若Y是比例数,通常使用logit变换[ln (Y/1-Y )]。
当模型违反了正态假设时,通常可以对响应变量尝试某种变换。 car包中的powerTransform()函数通过λ 的最大似然估计来正态化变量X λ。代码清单8-10是对数据states的应用。
结果表明,你可以用Murder0.6来正态化变量Murder。由于0.6很接近0.5,你可以尝试用平方根变换来提高模型正态性的符合程度。但在本例中, λ= 1的假设也无法拒绝(p=0.145),因此没有强有力的证据表明本例需要变量变换,这与图8-9的Q-Q图结果一致。
当违反了线性假设时,对预测变量进行变换常常会比较有用。 car包中的boxTidwell()函数通过获得预测变量幂数的最大似然估计来改善线性关系。下面的例子为用州的人口和文盲率来预测谋杀率,对模型进行了Box-Tidwell变换:
结果显示,使用变换Population0.87和Illiteracy1.36能够大大改善线性关系。但是对Population(p=0.75)和Illiteracy(p=0.54)的计分检验又表明变量并不需要变换。这些结果与图8-11的成分残差图是一致的。
响应变量变换还能改善异方差性(误差方差非恒定)。在代码清单8-7中,你可以看到car包中spreadLevelPlot()函数提供的幂次变换应用,不过, states例子满足了方差不变性,不需要进行变量变换。
谨慎对待变量变换
统计学中流传着一个很老的笑话:如果你不能证明A,那就证明B,假装它就是A。(对于统计学家来说,这很滑稽好笑。)此处引申的意思是,如果你变换了变量,你的解释必须基于变换后的变量,而不是初始变量。如果变换得有意义,比如收入的对数变换、距离的逆变换,解释起来就会容易得多。但是若变换得没有意义,你就应该避免这样做。比如,你怎样解释自杀意念的频率与抑郁程度的立方根间的关系呢?
8.5.3 增删变量
改变模型的变量将会影响模型的拟合度。有时,添加一个重要变量可以解决我们已经讨论过的许多问题,删除一个冗余变量也能达到同样的效果。删除变量在处理多重共线性时是一种非常重要的方法。如果你仅仅是做预测,那么多重共线性并不构成问题,但是如果还要对每个预测变量进行解释,那么就必须解决这个问题。最常见的方法就是删除某个存在多重共线性的变量(某个变量 vif
2 ) 。另外一个可用的方法便是岭回归——多元回归的变体,专门用来处理多重共线性问题。
8.5.4 尝试其他方法
正如刚才提到的,处理多重共线性的一种方法是拟合一种不同类型的模型(本例中是岭回归)。其实,如果存在离群点和/或强影响点,可以使用稳健回归模型替代OLS回归。如果违背了正态性假设,可以使用非参数回归模型。如果存在显著的非线性,能尝试非线性回归模型。如果违背了误差独立性假设,还能用那些专门研究误差结构的模型,比如时间序列模型或者多层次回归模型。最后,你还能转向广泛应用的广义线性模型,它能适用于许多OLS回归假设不成立的情况。在第13章中,我们将会介绍其中一些方法。至于什么时候需要提高OLS回归拟合度,什么时候需要换一种方法,这些判断是很复杂的,需要依靠你对主题知识的理解,判断出哪个模型提供最佳结果。既然提到最佳结果,现在我们就先讨论一下回归模型中的预测变量选择问题。
8.6 选择“最佳”的回归模型
尝试获取一个回归方程时,实际上你就面对着从众多可能的模型中做选择的问题。是不是所有的变量都要包括?抑或去掉那个对预测贡献不显著的变量?还是需要添加多项式项和/或交互项来提高拟合度?最终回归模型的选择总是会涉及预测精度(模型尽可能地拟合数据)与模型简洁度(一个简单且能复制的模型)的调和问题。如果有两个几乎相同预测精度的模型,你肯定喜欢简单的那个。本节讨论的问题,就是如何在候选模型中进行筛选。注意,“最佳”是打了引号的,因为没有做评价的唯一标准,最终的决定需要调查者的评判。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27