京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用价值与挑战并存
。什么是大数据?什么是数据?什么是资料?资料就是生产过程、管理过程,乃至经济、社会、生活过程的记忆,那些记忆可能表现在一个文件、一段演讲、一段文字上。资料放在计算机里就叫数据,所以数据是指以编码形式存在的信息载体。真正的大数据是指大而复杂的资料集,包括了海量性、时变性、异构性、分布性等特点,是我们从互联网的数据中能够观察到的特征。只要数据量超过临界量,就叫大数据。
大数据离不开互联网。近几年,互联网的发展走向是从复杂信息传递到消费互联,再到生产互联也就是物联网,然后到智慧互联。其实,这些新技术都是信息技术的一个层面,真正产生效益和作用的是所有技术的综合运用。
互联网和云计算是基础设施,物联网是交互方式,人工智能是应用模式,大数据是最底层的信息技术,任何工业要实现“两化”,任何政府要实现科学决策,大数据是基本标配。
那么,应该如何运用大数据呢?首先,明确目标是前提。这是推出大数据产业最重要的一步。其次,拥有数据是基础。没有数据就谈不上大数据产业。再次,计算平台是支撑。没有一定的计算架构和平台就无法计算。此外,分析技术是核心。这是当今较少提到的一个主题,在整个大数据链条中,有些链条做得过分粗壮,有些链条过分纤弱,即产业链布局不均衡。如果过分膨胀,将会产生新的产能过剩。最后,产生效益是根本。
大数据可以带来超凡价值。在这个过程中有很多观念要改变,要认识到数据是资产,用户是资源,服务即感知。大数据突飞猛进地发展能够解决相当多的问题,但仍然存在挑战。主要是分析基础被破坏、计算技术待革新、真伪判定需要重建以及对新技术的盲目所引起的盲从。总体来说,仍需集中力量攻克挑战,大数据的发展才能有大的突破。
继互联网之后,真正能够对企业产生重大影响的就是大数据。同时,要将大数据与其他技术相结合。现在人工智能潮正在到来,在可见时间内,人工智能真正能够发挥作用的就是数据智能,即大数据。因为人工智能简单来说可分为两大类,一类是模型人脑工作机制、行为方式,是仿脑类脑的技术;另一类是快速的认识,因为人脑对大数据的认识本身没有那么快,但获取数据的速度极强,可以从数据中分析出人类认识问题特定的方式方法,这就是数据智能,也叫人工智能。
同时,大数据能服务于转型升级,但我们至少要清楚什么是转型和升级。工业中的转型,就是从过去以产品为中心进行组织设计、制造、销售管理,转型到以服务和以定制化为中心。
最近有一个基本的观点说,现在正在从过去的“老三基”——材料、工艺、零部件,转变为“新三基”——大数据、传感器和零部件。对一个行业来讲,数据的复杂性来源于设计、制造、运行和服务,来源于对每一个数据的仔细分析。由于离散型和连续型并存、数值型和非数值类型并存、结构化和非结构化并存,大数据必须关注完整属性,必须关注产品全寿命特性,必须关注全方位连接,关注制造系统融合等,这使得我们认为基本难点在认知知识数据。其实全链条数据如物理模型的结合,也是技术难点。
大数据是新一代信息技术的基础性技术,需要推进应用。工业大数据非常有潜力,但一定要解决好定位、规划、切入点、标准、开发共享等问题。互联互通是基础,定制化服务是中心,懂数据会分析是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12