京公网安备 11010802034615号
经营许可证编号:京B2-20210330
盘点多数企业容易犯的五个大数据错误
如今,大数据革命驱动了现代工业发展,每天都有越来越多的企业采用大数据技术。然而,尽管大量数据已经存在和应用了很长时间,但如何使用它,仍然存在许多严重的错误。
以下是企业容易犯的5个主要的大数据错误,以及用户避免这些错误可以采取的措施。
1.使用大数据确认,而不是发现
大数据在用于提供以前被忽视的见解和发现时,对于人们来说是最好的。企业不仅可以更多地了解目标受众,并预测市场趋势,还可以对流程进行微调,以提高效率。然而,许多公司都有一个关于需要做什么的理论,并且将使用大数据作为一种证明的方法,同时忽略了提供反驳意见的其他见解。
相反,通过查看整个数据分析,企业可以获得准确的信息,而不仅仅是获取正面的信息。
2.依靠机器学习,而不是人类学习的问题
当企业出现大规模的问题时,往往会把大数据作为一种解决问题的方式。然而,通常大数据只能解决一方面的问题,而留下的更大问题被忽略或没有解决。在这一点上,数据科学家需要将他们的创意与大量数据结合起来,以识别并为遗留下的问题创造一个新的解决方案,直到整个问题得到解决。
企业期待大数据是一种神奇的修复工具,因此需要了解大数据只是一种工具而已,在适用于正确的问题时才能工作。第一个解决方案通常只是解决方案的第一部分。
3.将数据与业务分开
通常情况下,企业将其IT部门作为一个封闭部门,旨在通过大数据进行管理和改进。然而,为了使数据分析提供的见解真正使大企业受益,其结果需要超越改进技术系统或提升其营销工作。这些将影响他们如何做生意,以及他们的专业人员如何在各个层面上进行互动,创造,IT转型和业务转型。
在内部使用大数据可以让管理人员了解员工的互动情况,哪些部门可以进行改进,甚至可以在管理风格上加以利用。通过利用数据分析来改进基础架构本身,在其他方面都有更好的结果。
4.限制他们的数据组,影响结果
通常,面试官询问问题的方式可能会影响到最终的答案。大数据也是如此。由于数据池如此巨大,因此不可能立即筛选所有内容。这意味着查询必须发送出去,才能收集回答专家提出的问题。但是,这个过程必须精心设计,因为虽然企业可能会收到正在寻找的答案样式,但也可以禁止不同的选择,有时被视为无关的信息,有机会从整个视角看问题。
5.没有聘请最好的数据科学家
工具只是一个工具而已,除非是放在合适的人的手中。为了节省资金或加速大数据集成到企业业务中,许多人忽略了选择合适的数据科学家来管理其价值。只有具备正确资格的技术专业人员才能早日识别问题,知道正确的发送查询,以获得最准确的见解,以及在哪里集中数据,以确保其公司在合适的时间了解准确的信息。
考虑到这一点,就像企业使用大数据一样重要,更重要的是企业确保拥有合适的团队。
大数据只有通过正确的方式处理才会有用。通过从其流程中消除这5个错误,企业才可以利用大数据更好地指导工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12