
Hadoop及其构成
玩计算机需要先装一个windows系统(或linux系统)。同样道理,玩大数据也要有个大数据系统,用于将数据汇聚起来,加以分析和处理,将其中有价值的信息分析出来,让人们认清事物的全局、预测未来的变化趋势。Hadoop是当前最为流行的两个大数据系统之一。
Hadoop是一个开源分布式计算平台。用户可以利用Hadoop轻松地组织计算机资源,从而搭建自己的分布式计算平台,并且可以充分利用集群的计算和存储能力,完成海量数据的处理。Hadoop已广泛地被企业用于搭建大数据库系统,据不完全统计,全球已经有数以万计的Hadoop系统被安装和使用,国内知名的中国移动、百度、阿里都在大规模地使用Hadoop系统。随着互联网的不断发展,新的业务模式还将不断涌现,Hadoop的应用也会从互联网领域向电信、电子商务、银行、生物制药等领域拓展。
Hadoop是Apache组织正在推进的项目。这个项目主要由两大部分的子项目构成,一个是基础部分,另一个是配套部分。
1)基础部分
(1)Hadoop Common。Hadoop Common是支撑Hadoop的公共部分,包括文件系统、远程过程调用RPC和序列化函数库等。
(2)HDFS。HDFS是可以提供高吞吐量的可靠分布式文件系统,是Google GFS的开源实现。
(3)MapReduce。MapReduce是大型分布式数据处理模型,是Google MapReduce的开源实现。
2)配套部分
(1)HBase。HBase是支持结构化数据存储的分布式数据库,是Google BigTable的开源实现。
(2)Hive。Hive是提供数据摘要和查询功能的数据仓库。
(3)Pig。Pig是在MapReduce上构建的一种脚本式开发方式,大大简化了MapReduce的开发工作。
(4)Cassandre。Cassandre是由Facebook支持的开源、高可扩展分布式数据库,是Amazon库层架构Dynamo的全分布和Google BigTable的列式数据存储模型的有机结合。
(5)Chukwa。Chukwa是用来管理大型分布式系统的数据采集系统。
(6)Zookeeper。Zookeeper用于解决分布式系统中一致性问题,是Google Chubby的开源实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13