京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R的变量类型和常用函数
一、R的变量类型
也可以说是数据存储方式,有:
Vector: 一维阵列
Matrics: 二维阵列,其中所有元素是同一数据类型。
factor: 种类变量,可使用levels函数来规定种类变量的各级别的名称。例如:levels(factor_vector) <- c("name1", "name2",...)
Dataframe:二维阵列,每一列中的元素是同一数据类型,不同列的数据类型可以不同。
List : 一个List中可包含多个类型对象,包括List本身。
二、常用函数
seq(from,to,by): Generate sequences, by specifying the from, to and by arguments.
rep(): Replicate elements of vectors and lists.
sort(): Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.
rev(): Reverse the elements in a data structures for which reversal is defined.
str(): Display the structure of any R object.
append(): Merge vectors or lists.
is.*(): Check for the class of an R object.
as.*(): Convert an R object from one class to another.
unlist(): Flatten (possibly embedded) lists to produce a vector.
三、apply函数家族
通过apply函数对结构化的数据实现某些操作,对向量(vector)或者列表(list)按照元素或元素构成的子集合进行迭代。个人认为相当于一种批处理操作。
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
lapply和sapply将一个函数应用于一个list或者vector, 区别在于lapply以列表(list)形式返回结果,而sapply将输出结果简化为一个向量或者矩阵。
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
vapply类似于sapply,但是提供了参数FUN.VALUE用以指明返回值的形式,即返回值可以有预定义类型,因此更安全。
四、正则表达式(regular expression)
正则表达式不是R的专属内容,用于描述/匹配一个文本集合的表达式。通常被用来检索、替换那些符合某个模式(规则)的文本。
1.元字符(metacharacter)
一些特殊的字符在正则表达式中不在用来描述它自身,它们在正则表达式中已经被“转义”,这些字符称为元字符。
常用元字符如下:
2、字符串匹配查询函数
查询功能的函数主要有grep、grepl, 主要区别在于其输出结果格式不同,共同点是都包含正则表达式pattern和文本X这两个参数。
grepl(pattern, x) which returns TRUE when a pattern is found in the corresponding character string.
grep(pattern, x) which returns a vector of indices of the character strings that contains the pattern.
grep仅返回匹配项的下标,而grepl返回所有的查询结果,并用逻辑向量表示有没有找到匹配
3、字符串替换函数
模式替换函数主要有sub和gsub,二者的区别在于sub函数只替换文本中第一个匹配的元素,gsub则针对X中所有匹配元素。
sub(pattern, replacement, x)
gsub(pattern, replacement, x)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01