
SPSS统计基础---描述功能的使用
“描述”过程为单个表中的若干变量显示单变量摘要统计量,并计算标准化值(z 得分)。变量可以按其均值(升序或降序)大小、按字母顺序或按您选择变量的顺序(缺省值)进行排序。
当z 得分被保存时,它们将被添加到数据编辑器的数据中并可为图表、数据列表和分析所用。如果变量以不同的单位(例如,人均国内生产总值和受教育人口百分比)记录的,z 得分转换会将变量置于更易于直观比较的常用标度中。
示例。如果您的数据中每个个案都包含数月中每天采集的每个销售人员的日销售总额(例如,Bob、Kim、Brian 各有一个条目),则“描述”过程可以计算每个职员的平均日销售额,并从高到低排列结果。
统计量。样本大小、均值、最小值、最大值、标准差、方差、范围、合计、均值,标准误、峰度和偏度及两者的标准误。
数据。以图形方式显示数值变量中的记录错误、离群值和分布异常之后使用这些数值变量。“描述”过程对大文件(数千个案)特别有效。
假设。大多数可用统计量(包括z 得分)都基于正态理论,并适合于对称分布的定量变量(定距或者定比测量级别)。避免类别未排序或偏斜分布的变量。z 得分的分布与原数据具有相同的形状,因此,计算z 得分并不是排除问题数据的方法。
获取描述统计
E 从菜单中选择:
分析> 描述统计> 描述...
选择一个或多个变量。
根据需要,您可以:
选择将标准化得分另存为变量以将z 得分保存为新变量。
单击选项选择可选统计量和显示顺序。
描述:选项
均值与总和。默认情况下显示均值(或算术平均数)。
离散程度。测量数据中的分布或变动的统计量包括标准差、方差、范围、最小值、最大值和均值标准误。
标准差(T). 对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一倍标准差范围内,95% 的个案在均值的两倍标准差范围内。例如,在正态分布中,如果平均年龄为45,标准差为10,则95% 的个案将处于25 到65 之间。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
最小值. 数值变量的最小值。
最大值. 数值变量的最大值。
均值的标准误(E). 取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于-2 或大于+2,则可以断定两个值不同)。
分布。峰度和偏度是描绘分布形状和对称情况的统计量。这些统计量与其标准误一起显示。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。数据分析师培训
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
显示顺序。默认情况下,将按您选择变量的顺序显示变量。(可选)您可以按字母顺序升序或降序显示变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10