
SPSS统计基础---频率的使用
频率过程提供有助于描述多种类型的变量的统计量和图形显示。频率过程是查看数据理想的开始位置。对于频率报告和条形图,可以用升序或降序排列不同的值,也可以按其频率对类别进行排序。当变量具有许多不相同的值时,可提取频率报告。您可以使用频率(缺省值)或百分比标记图表。
示例。按行业类型划分的公司客户的分布是什么?从输出中可以了解到客户的37.5%来自政府机构,24.9% 来自公司,28.1% 来自学术机构,9.4% 来自保健行业。对于连续的定量数据(例如,销售收入),您会了解到平均产品销售额为3,576 美元,标准差为1,078 美元。
统计量和图。频率计数、百分比、累计百分比、均值、中位数、众数、和、标准差、方差、范围、最小值和最大值、均值标准误、偏度和峰度(两者都带有标准误)、四分位数、用户指定的百分位数、条形图、饼图和直方图。
数据。使用数值代码或字符串以对分类变量进行编码(名义或序数级别度量)。
假设。特别对于已排序或未排序的类别的变量,表格和百分比可以提供对所有分布中的数据都有用的描述。大多数可选摘要统计量(如均值和标准差)是基于正态理论的,它们适用于对称分布的定量变量。稳健统计量(如中位数、四分位数和百分位数)适合于可能符合或可能不符合正态假设的定量变量。
获取频率表
E 从菜单中选择:
分析> 描述统计> 频率...
选择一个或多个分类变量或定量变量。
根据需要,您可以:
单击统计量以获得定量变量的描述统计。
单击结果显示顺序的格式。
频率统计量
百分位值。一个定量变量的值,其将排序过的数据分组,以使某个百分比在上而另外一个百分比在下。四分位数(第25、50、75 个百分位数)将观察值分为四个大小相等的组。如果您想让组数不等于4,请选择n 个相等组的割点。您也可指定单个百分位数(例如,第95 个百分点,有95% 的观察值大于该值)。
集中趋势。描述分布位置的统计量,包括均值、中位数、众数和所有值的总和。
均值. 集中趋势的测量。算术平均,总和除以个案个数。
中位数. 第50 个百分位,大于该值和小于该值的个案数各占一半。如果个案个
数为偶数,则中位数是个案在以升序或降序排列的情况下最中间的两个个案的平均。中位数是集中趋势的测量,但对于远离中心的值不敏感(这与均值不同,均值容易受到少数多个非常大或非常小的值的影响)。
众数. 最频繁出现的值。如果出现频率最高的值不止一个,则每一个都是一个众
数。“频率”过程仅报告此类多个众数中最小的那个。
总和. 所有带有非缺失值的个案的值的合计或总计。
离散程度。测量数据中变异和展开的统计量,包括标准差、方差、范围、最小值、最大值和均值标准误。
标准差. 对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一倍标准差范围内,95% 的个案在均值的两倍标准差范围内。例如,在正态分布中,如果平均年龄为45,标准差为10,则95% 的个案将处于25 到65 之间。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
最小值. 数值变量的最小值。
最大值. 数值变量的最大值。
均值的标准误. 取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于-2 或大于+2,则可以断定两个值不同)。
分布。偏度和峰度是描述分布形状和对称性的统计量。这些统计量与其标准误一起显示。
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。
值是组中点。如果您的数据中的值是组中点(例如,所有年龄在30 多岁的人都被编码为35),则选择此选项以估计原始未分组的数据的中位数和百分位数。
频率图
图表类型。饼图显示各部分对整体的贡献。饼图的每个分区对应于由单个分组变量定义的组。条形图将不同值或不同类别的计数作为单独的条显示,使您可以直观地比较各个类别。直方图也有条,但它们沿着相等的区间刻度进行绘制。每个条的高度是定量变量在该区间内的值的计数。直方图显示分布的形状、中心和分布。叠加在直方图上的正态曲线有助于您判断数据是否为正态分布。
图表值。对于条形图,可以按频率计数或百分比标记刻度轴。
频率格式
排序方式。可根据数据中的实际值或根据这些值的计数(出现的频率)以升序或降序排列频率表。但是,如果您请求直方图或百分位数,则频率假定变量是定量数据并以升序显示其值。
多个变量。如果您生成多个变量的统计表,您可在单个表中显示所有变量(比较变量),或显示每个变量的独立统计量表(按变量组织输出)。排除超过n 个类别的表。此选项防止显示具有超过指定数目的值的表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27