京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于SPSS数据预处理
关于SPSS数据预处理
拿到一份数据,或者在看到国内外某个学者的文章有想法而自己手里的数据刚好符合这个想法可以做时,在整理好数据后不要急于建模。一定要对数据做缺失值处理、异常值处理。在数据预处理的基础上再进一步建模,否则可能得到错误的结果。
心得1:数据预处理怎么做。
一是 缺失值的处理。我个人有几个看法:
数据样本量足够大,在删除缺失值样本的情况下不影响估计总体情况,可考虑删除缺失值;
二是数据样本量本身不大的情况下,可从以下两点考虑:1是采用缺失值替换,SPSS中具体操作为“转换”菜单下的“替换缺失值”功能,里面有5种替换的方法。若数据样本量不大,同质性比较强,可考虑总体均值替换方法,如数据来自不同的总体(如我做农户调研不同村的数据),可考虑以一个小总体的均值作为替换(如我以一个村的均值替换缺失值)。2是根据原始问卷结合客观实际自行推断估计一个缺失值的样本值,或者以一个类似家庭的值补充缺失值。
心得2:数据预处理第二点异常值的处理。
我大概学了两门统计软件SPSS和Stata,SPSS用的时间久些,熟悉一下,Stata最近才学,不是太熟。关于这点我结合着来说。关于异常值的处理可分为两点,一是怎么判定一个值是异常值,二是怎么去处理。
判定异常值的方法我个人认为常用的有两点:1是描述性统计分析,看均值、标准差和最大最小值。一般情况下,若标准差远远大于均值,可粗略判定数据存在异常值。2是通过做指标的箱图判定,箱图上加“*”的个案即为异常个案。
发现了异常值,接下来说怎么处理的问题。大概有三种方法:
1是正偏态分布数据取对数处理。我做农户微观实证研究,很多时候得到的数据(如收入)都有很大的异常值,数据呈正偏态分布,这种我一般是取对数处理数据。若原始数据中还有0,取对数ln(0)没意义,我就取ln(x+1)处理;
2是样本量足够大删除异常值样本;
3是从stata里学到的,对数据做结尾或者缩尾处理。这里的结尾处理其实就是同第二个方法,在样本量足够大的情况下删除首尾1%-5%的样本。缩尾指的是人为改变异常值大小。如有一组数据,均值为50,存在几个异常值,都是500多(我这么说有点夸张,大概是这个意思),缩尾处理就是将这几个500多的数据人为改为均值+3标准差左右数据大小,如改为100。
总结而言,我个人认为做数据变换的方式比较好,数据变换后再做图或描述性统计看数据分布情况,再剔除个别极端异常值。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01