京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言并行计算的原理和案例
众所周知,在大数据时代R语言有两个弱项,其中一个就是只能使用单线程计算。但是R在2.14版本之后,R就内置了parallel包,强化了R的并行计算能力。
parallel包实际上整合了之前已经比较成熟的snow包和multicore包,multicore无法在windows下运行。parallel包可以很容易的在计算集群上实施并行计算,在多个CPU核心的单机上,也能发挥并行计算的功能。我们今天就来探索一下parallel包在多核心单机上的使用。
parallel包的思路和lapply函数很相似,都是将输入数据分割、计算、整合结果。只不过并行计算是用到了不同的cpu来运算。
这样的计算过程可以使用如下方式来表述:
1、启动M个附属进程,并初始化
2、针对于任务,为每个附属进程分发所有的数据
3、将任务粗略的分为M个块儿(chunks),并将这些块儿发送到附属进程(包含需要的R代码)
4、等待所有的附属进程完成计算任务,并返回结果
5、对于其他任务也同样重复2-4
6、关闭附属进程
在parallel包里,对应上述两种并行化方式有如下两个核心函数(针对于lapply函数的并行化,mclapply在windows上不能使用):
parLapply(cl, x, FUN, ...)
mclapply(X, FUN, ..., mc.cores)
案例1、不使用并行计算,直接使用lapply(隐式循环函数,它实际就是对不同的数据应用了相同的函数):
fun <- function(x){
return (x+1);
}
system.time({
res <- lapply(1:5000000, fun);
});
user system elapsed
21.42 1.74 25.70
案例2、使用parallel包来加速
library(parallel)
#打开四核,具体核数根据机器的核数决定
cl <- makeCluster(getOption("cl.cores", 4));
system.time({
res <- parLapply(cl, 1:5000000, fun)
});
user system elapsed
6.54 0.34 19.95
#关闭并行计算
stopCluster(cl);
看看单核机器跑出来的结果:
user system elapsed
29.30 9.23 97.22
所以,并非核数越多越好,看机器配置。
这个函数有两点要注意:
首先要先用detectCores函数确定系统核心数目,对于Window系统下的Intel I5或I7 处理器,一般使用detectCores(logical = F)来获得实际的物理核心数量。
由于这个函数使用的是调用Rscript的方式,这个例子里,对象被复制了三份,因此内存会吃的很厉害,在大数据条件就要小心使用。
案例3、在Linux下使用mclapply函数的效果如下:
mc <- getOption("mc.cores", 3)
system.time({
res <- mclapply(1:5000000, fun, mc.cores = mc);
});
user system elapsed
6.657 0.500 7.181
foreach包是revolutionanalytics公司贡献给R开源社区的一个包,它能使R中的并行计算更为方便。与sapply函数类似,foreach函数中的第一个参数是输入参数,%do%后面的对象表示运算函数,而.combine则表示运算结果的整合方式。 下面的例子即是用foreach来完成前面的同一个任务。如果要启用并行,则需要加载doParallel包,并将%do%改为%dopar%。这样一行代码就能方便的完成并行计算了。
案例4、foreach包的使用:
library(foreach)
# 非并行计算方式,类似于sapply函数的功能
x <- foreach(x=1:1000,.combine='rbind') %do% func(x)
# 启用parallel作为foreach并行计算的后端
library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)
# 并行计算方式
x <- foreach(x=1:1000,.combine='rbind') %dopar% func(x)
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27