京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当制造遇上大数据
“现在越来越多的行业都要适应大数据的趋势,不仅限于原来的高科技、互联网企业,现在包括通讯、金融、制造、能源等行业都在顺应趋势培养这方面的竞争力。”Hermann Wimmer 说,“用数据来驱动业务增长”是未来的方向。“例如,市场部门如何利用真实的数据来帮助制定市场成长策略;怎样提升客户体验或者客户满意度;怎样通过降低仓储、物流的运营成本等让企业运营得更智慧、更有效率;怎样结合生产部门和其他部门的数据优化生产和运营能力,这些都是大数据的‘用武之地’。”Teradata( 天睿公司) 大中华区首席执行官辛儿伦(AaronHsin) 举例道。
对于传统制造业来说,大数据能在哪些方面进行“颠覆”和“改进”?麦肯锡咨询公司在近日发布的《如何利用大数据改进制造业》的报告中列举了10 条大数据颠覆制造过程的路径,涉及优化生产进度;提高制造绩效;精确供应商管理;追踪产品质量,改进工作流程;以销定产,制定生产计划;量化产能,追踪设备运转效率;以及提供生产设备预防性维护建议等方面。
可以说,大数据影响到生产制造、运营、管理的方方面面,而从目前大数据在制造业的应用范围来看,我们想从客户关系管理(CRM)、优化生产以及供应链管理三方面窥探大数据的无限可能。
“大海捞针”成为可能
在当今经济环境中,良好的客户服务和客户体验至关重要。越来越多的企业通过挖掘客户|数据提升客户关系,了解客户需求。今天的CRM 数据分析能力已经不止局限于客户邮件、电话等数据,而是能够识别客户购买行为,了解客户情绪。辛儿伦切身感受到数据分析在客户管理方面应用的变化趋势:“过去更多是在数据仓库针对客户关系的管理和体验,特别是对客户|数据和CRM 数据进行分析和探索促进营销增长的途径和手段。随着技术和数据架构的演进,现在的数据已经延伸到很多范围,比如位置数据、基站数据、还有通话记录和移动互联网上的消费者行为等。利用这些来自多渠道的数据建立分析模型,以便从360 度去观察客户的兴趣、爱好,并预测未来的行为,从而制定个性化的营销策略。”
发生在海尔的一个营销故事可以从这方面揭示大数据的“神奇”。2012 年,海尔推出帝樽空调,如何精准地预测有哪些用户可能选购帝樽空调?如何送去个性化的服务方案?海尔从SCRM 会员数据库中提取了数万名用户数据,与中国邮政的名址数据库匹配,建立“look-alike”模型。此外,海尔SCRM会员平台还同旅游、健康类杂志有合作。海尔通过查询订阅名|录,发现北京一小区有人订阅旅游杂志,其中有位陈先生。海尔得出“ 他对环境、自然应该感兴趣”的结论,于是推测,他极有可能对帝樽空调除PM2.5功能感兴趣。接着,陈收到了海尔投递的一封直邮单页,除了公益环保知识外,重点介绍了帝樽空调的除PM2.5 功能。接下来的故事就水到渠成了,陈带着直邮单页,到附近的商超购买了空调,并且还登录海尔官方网站,自主注册成为海尔会员。
从这个案例可以看出,在客户管理方面,企业营销的对象不仅是一群人、一类人,而是具体的某个人。其次,跨领域数据的整合也很重要,当然企业应当首先明确需要哪些领域的数据和如何获取这些数据。Hermann Wimmer 例举了两个行业之间的数据共享带来的商业价值—汽车行业和保险行业。“买车的人都要上保险,每一个司机由于自己的驾驶习惯不一样,保险公司对于他们的评估也是不一样的。如何才能更准确地评估一个司机到底属于高风险还是低风险驾驶习惯,就取决于他所开的车。通过车上所装载的100 多个传感器传回的数据,可以了解他的驾驶习惯,然后判断他属于什么级别的风险类别。比如,他不超速、驾驶平稳,就属于低风险,反之,开的很快就属于高风险类别。”Hermann Wimmer 说,这两个行业密切的联系就是由传感器带来的数据连接起来的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27