
说说什么是数据挖掘
好吧,这样的定义方式比较抽象,但这也是业界认可度最高的一种解释了。对于如何开发一个大数据环境下完整的数据挖掘项目,业界至今仍没有统一的规范。说白了,大家都听说过大数据、数据挖掘等概念,然而真正能做而且做好的公司并不是很多。
数据挖掘背后的哲学思想
在过去很多年,首要原则模型(first-principle models)是科学工程领域最为经典的模型。
比如你要想知道某辆车从启动到速度稳定行驶的距离,那么你会先统计从启动到稳定耗费的时间、稳定后的速度、加速度等参数;然后运用牛顿第二定律(或者其他物理学公式)建立模型;最后根据该车多次实验的结果列出方程组从而计算出模型的各个参数。通过该过程,你就相当于学习到了一个知识
--- 某辆车从启动到速度稳定行驶的具体模型。此后往该模型输入车的启动参数便可自动计算出该车达到稳定速度前行驶的距离。
然而,在数据挖掘的思想中,知识的学习是不需要通过具体问题的专业知识建模。如果之前已经记录下了100辆型号性能相似的车从启动到速度稳定行驶的距离,那么我就能够对这100个数据求均值,从而得到结果。显然,这一过程是是直接面向数据的,或者说我们是直接从数据开发模型的。
这其实是模拟了人的原始学习过程 --- 比如你要预测一个人跑100米要多久时间,你肯定是根据之前了解的他(研究对象)这样体型的人跑100米用的多少时间做一个估计,而不会使用牛顿定律来算。
数据挖掘的起源
由于数据挖掘理论涉及到的面很广,它实际上起源于多个学科。如建模部分主要起源于统计学和机器学习。统计学方法以模型为驱动,常常建立一个能够产生数据的模型;而机器学习则以算法为驱动,让计算机通过执行算法来发现知识。仔细想想,"学习"本身就有算法的意思在里面嘛。
然而数据挖掘除了建模外,还有不少其他要做的工作(本文后面会一一讲到),因此涉及到不少其他知识,如下图所示:
数据挖掘的基本任务
数据挖掘的两大基本目标是预测和描述数据。其中前者的计算机建模及实现过程通常被称为监督学习(supervised learning),后者的则通常被称为无监督学习(supervised learning)。往更细分,数据挖掘的目标可以划分为以下这些:
预测主要包括分类 - 将样本划分到几个预定义类之一,回归 - 将样本映射到一个真实值预测变量上;描述主要包括聚类 - 将样本划分为不同类(无预定义类),关联规则发现 - 发现数据集中不同特征的相关性。本系列其他文章将会分别对这些工作深入进行讲解,如果读者是第一次接触这些概念请不要纠结。
数据挖掘的基本流程
从形式上来说,数据挖掘的开发流程是迭代式的。开发人员通过如下几个阶段对数据进行迭代式处理:
其中,
1. 解读需求
绝大多数的数据挖掘工程都是针对具体领域的,因此数据挖掘工作人员不应该沉浸在自己的世界里YY算法模型,而应该多和具体领域的专家交流合作以正确的解读出项目需求。这种合作应当贯穿整个项目生命周期。
2. 搜集数据
在大型公司,数据搜集大都是从其他业务系统数据库提取。很多时候我们是对数据进行抽样,在这种情况下必须理解数据的抽样过程是如何影响取样分布,以确保评估模型环节中用于训练(train)和检验(test)模型的数据来自同一个分布。
3. 预处理数据
预处理数据可主要分为数据准备和数据归约两部分。其中前者包含了缺失值处理、异常值处理、归一化、平整化、时间序列加权等;而后者主要包含维度归约、值归约、以及案例归约。后面两篇博文将分别讲解数据准备和数据归约。
4. 评估模型
确切来说,这一步就是在不同的模型之间做出选择,找到最优模型。很多人认为这一步是数据挖掘的全部,但显然这是以偏概全的,甚至绝大多数情况下这一步耗费的时间和精力在整个流程里是最少的。
5. 解释模型
数据挖掘模型在大多数情况下是用来辅助决策的,人们显然不会根据"黑箱模型"来制定决策。如何针对具体环境对模型做出合理解释也是一项非常重要的任务。
数据挖掘的工程架构
回到本文开头提到的那个问题,“如何开发一个大数据环境下完整的数据挖掘项目?”。这个问题每个公司有自己的答案,这里仅以A公司的情况进行介绍。
在A公司的数据引擎团队中,主要人员分成A、B、C、D四个大组。这四个大组的分工非常明确,如下图所示:
图中的这些个数据引擎架构在一个基于维度建模的云数据仓库之上,并对上层应用提供算法支撑、推荐支撑、可视化支撑等等。这里也能看出A公司的数据挖掘工程架构主要由三大块组成:底层数据仓库、中间数据引擎、高层可视化/前端输出。很多小伙伴问我,你是一名数据挖掘工程师呀,可为什么你前面的博文都是数据仓库和数据可视化呢?我想如果他们看到这里想必不会有此疑问了:)。
至于这些引擎的具体作用、开发方法,体系结构等则由于涉及公司秘密不能深入细说,请各位读者见谅。
小结
数据挖掘涵盖的面非常大,本文仅旨在让读者对数据挖掘有一个感性的认识。关于什么是数据挖掘如果读者还不清楚的话也不要纠结,跟着本系列一起学习一定能有所收获并会最终发现:数据挖掘是一门非常有趣的学问,比单纯的写代码要有意思多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25