
一行R代码来实现繁琐的可视化
ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以ggplot的风格画出好看的图,大大地提高了工作的效率。
ggfortify 已经可以在 CRAN 上下载得到,但是由于最近很多的功能都还在快速增加,因此还是推荐大家从 Github 上下载和安装。
library(devtools) install_github('sinhrks/ggfortify') library(ggfortify)
接下来我将简单介绍一下怎么用ggplot2和ggfortify来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用ggfortify来对时间序列进行快速可视化的方法。
PCA (主成分分析)
ggfortify使ggplot2知道怎么诠释PCA对象。加载好ggfortify包之后, 你可以对stats::prcomp和stats::princomp对象使用ggplot2::autoplot。
library(ggfortify) df <- iris[c(1, 2, 3, 4)] autoplot(prcomp(df))
你还可以选择数据中的一列来给画出的点按类别自动分颜色。输入help(autoplot.prcomp)可以了解到更多的其他选择。
autoplot(prcomp(df), data = iris, colour = 'Species')
比如说给定label = TRUE可以给每个点加上标识(以rownames为标准),也可以调整标识的大小。
autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE, label.size = 3)
给定shape = FALSE可以让所有的点消失,只留下标识,这样可以让图更清晰,辨识度更大。
autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE, label.size = 3)
给定loadings = TRUE可以很快地画出特征向量。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE)
同样的,你也可以显示特征向量的标识以及调整他们的大小,更多选择请参考帮助文件。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3)
和PCA类似,ggfortify也支持stats::factanal对象。可调的选择也很广泛。以下给出了简单的例子:
注意当你使用factanal来计算分数的话,你必须给定scores的值。
d.factanal <- factanal(state.x77, factors = 3, scores = 'regression') autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, label.size = 3, loadings = TRUE, loadings.label = TRUE, loadings.label.size = 3)
K-均值聚类
autoplot(kmeans(USArrests, 3), data = USArrests)
autoplot(kmeans(USArrests, 3), data = USArrests, label = TRUE, label.size = 3)
其他聚类
ggfortify也支持cluster::clara,cluster::fanny,cluster::pam。
library(cluster) autoplot(clara(iris[-5], 3))
给定frame = TRUE,可以把stats::kmeans和cluster::*中的每个类圈出来。
autoplot(fanny(iris[-5], 3), frame = TRUE)
你也可以通过frame.type来选择圈的类型。更多选择请参照ggplot2::stat_ellipse里面的frame.type的type关键词。
autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = 'norm')
更多关于聚类方面的可视化请参考 Github 上的 Vignette 或者 Rpubs 上的例子。
lfda(Fisher局部判别分析)
lfda包支持一系列的 Fisher 局部判别分析方法,包括半监督 lfda,非线性 lfda。你也可以使用ggfortify来对他们的结果进行可视化。
library(lfda) # Fisher局部判别分析 (LFDA) model <- lfda(iris[-5], iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
# 非线性核Fisher局部判别分析 (KLFDA) model <- klfda(kmatrixGauss(iris[-5]), iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
注意对iris数据来说,不同的类之间的关系很显然不是简单的线性,这种情况下非线性的klfda 影响可能太强大而影响了可视化的效果,在使用前请充分理解每个算法的意义以及效果。
# 半监督Fisher局部判别分析 (SELF) model <- self(iris[-5], iris[, 5], beta = 0.1, r = 3, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
时间序列的可视化
用ggfortify可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。
ts对象
library(ggfortify) autoplot(AirPassengers)
可以使用ts.colour和ts.linetype来改变线的颜色和形状。更多的选择请参考help(autoplot.ts)。
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
多变量时间序列
library(vars) data(Canada) autoplot(Canada)
使用facets = FALSE可以把所有变量画在一条轴上。
autoplot(Canada, facets = FALSE)
autoplot也可以理解其他的时间序列类别。可支持的R包有:
zoo::zooreg
xts::xts
tseries::irts
一些例子:
library(xts) autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries) autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
你也可以通过ts.geom来改变几何形状,目前支持的有line,bar和point。
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
forecast包
library(forecast) d.arima <- auto.arima(AirPassengers) d.forecast <- forecast(d.arima, level = c(95), h = 50) autoplot(d.forecast)
有很多设置可供调整:
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red', predict.linetype = 'dashed', conf.int = FALSE)
vars包
library(vars) data(Canada) d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1] d.var <- VAR(Canada, p = d.vselect, type = 'const') autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4', predict.colour = 'blue', predict.linetype = 'dashed')
changepoint包
library(changepoint) autoplot(cpt.meanvar(AirPassengers))
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
strucchange包
library(strucchange) autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed', cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
dlm包
library(dlm) form <- function(theta){ dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2])) } model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par) filtered <- dlmFilter(Nile, model) autoplot(filtered)
autoplot(filtered, ts.linetype = 'dashed', fitted.colour = 'blue')
smoothed <- dlmSmooth(filtered) autoplot(smoothed)
p <- autoplot(filtered) autoplot(smoothed, ts.colour = 'blue', p = p)
KFAS包
library(KFAS) model <- SSModel( Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA) ) fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS") smoothed <- KFS(fit$model) autoplot(smoothed)
使用smoothing='none'可以画出过滤后的结果。
filtered <- KFS(fit$model, filtering="mean", smoothing='none') autoplot(filtered)
trend <- signal(smoothed, states="trend") p <- autoplot(filtered) autoplot(trend, ts.colour = 'blue', p = p)
stats包
可支持的stats包里的对象有:
stl,decomposed.ts
acf,pacf,ccf
spec.ar,spec.pgram
cpgramautoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
autoplot(acf(AirPassengers, plot = FALSE))
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
library(forecast) ggtsdiag(auto.arima(AirPassengers))
gglagplot(AirPassengers, lags = 4)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25