
大数据竞争:始于产品,成于应用
目前的大数据市场,群雄逐鹿,各有所长。对于大数据厂商而言,关注哪些角度,如何打造自身核心竞争力,是其竞争策略的决定性因素。竞争力的来源有多个方面:资本、人才、技术、产品、市场、营销等等;然而在市场竞争中,最终决定权仍然属于用户。从用户角度出发,直接接触的是两个方面:一是产品本身,二是产品在自身业务中的应用。下面,我们来聊聊大数据厂商如何从产品和应用角度来提高其服务能力与市场竞争力。
始于产品,快速的产品迭代是基本竞争力
与to C市场惯于概念炒作不同,成熟的企业服务市场更需要用产品说话,再好的技术和理念,都必须有实际产品作为载体,用户也需要通过产品来获取所需的服务。所以,尽管大数据市场也有很多不同的发展理念,技术纷繁复杂,但好的产品始终是竞争力的基础。
就数据分析产品而言,有多方面功能要素,每个功能又可以进行细分,各个功能点还要相互协调,产品功能的优化与试用体验就成了竞争的关键。这里我们且不讨论纷繁复杂的技术细节,单就产品的迭代速度来看:只有实现快速的产品迭代,才能及时对用户需求进行快速反馈,随着前沿的理念与技术发展更新产品,根据市场需求对原有功能布局进行调整。
以大数据厂商永洪科技为例,每年4~5次的产品迭代速度,基本保证了产品与技术发展和市场需求的快速同步。2016年11月,永洪发布了旗下大数据平台产品Yonghong Z-Suite 7.0版本;2017年4月21日,在济南召开的大数据峰会上,永洪再次更新到了Yonghong Z-Suite 7.1版本,在多个方面做出改进,用永洪科技高级副总裁邵文龙话来说,就是“1234”:
1. 一个全新的交互设计:为用户提供极致易用的操作方式与用户体验;
2. 两处重大性能提升: 移动端性能大幅提升,Android与iOS性能分别提升100%与50%;集市数据导入性能提升数倍,实现节点间数据自动平衡与更高效的数值压缩存储;
3. 三个维度增强可管理性:调度任务增强了在搜索、后续任务、视图交互、多附件等方面的功能,同时在管控和安全方面加强了权限管理粒度细化、数据库支持和防破解等特性;
4. 40多处体验提升:包括大屏显示比例、模块切换、数据源物理表直接使用,以及多种智能布局特性等。
产品迭代速度是研发能力和市场嗅觉的重要体现,为了应对快速变化的大数据市场环境,不断提高的用户需求,大数据厂商应该加强技术和产品研发,保持快速的产品迭代频率,这也是“敏捷BI”在响应速度之外的又一的“敏捷”之处。
成于应用,为客户创造价值才能获得认可
大数据厂商成功的基础是高性能、高可用性、高易用性的产品,但好的产品必须经受住用户的检验,才能完成“惊险的一跃”。一般来说,好的数据分析应用,应该具有如下的特点:
第一,深入理解用户的业务逻辑。每个企业用户的数据,都是对其具体业务的数据化呈现,数据本身是看不出什么关联的,有内在关联的是业务。所以,要让大数据真正有用,就必须对用户的业务有深入理解,才能在数据分析中发现关联,呈现的分析结果才具有实际的参考价值。
第二,有强大的数据分析与数据挖掘能力。应该说大数据应用的核心就在于数据分析,通过对企业业务数据的分析,发现规律,找到经营中存在的问题和风险点,进而为经营决策提供数据支持,改变原来凭借经验直觉进行的粗放式决策,真正实现基于数据的科学决策。
第三,展现形式要简单直观,易于理解。大部分的经营决策者,是不具备也不需要专业的数据分析能力的,因为数据分析最后呈现的应该是一般人都能快速理解的数据形式。敏捷BI如此流行,一个很重要的因素是其让数据分析变得简单直观,没有专业数据分析技术背景的人也能用数据分析工具实现分析。只有让数据分析变得简单,才能降低门槛,让“人人都是数据分析师”的理念变成现实。
仍然以永洪科技为例,其产品在多个专业领域的应用表现可圈可点,已经在海尔集团、济南交警支队等企事业机构有成功应用。以其客户之一的美的集团为例,据介绍,其通过永洪产品打造企业大数据平台,进而构建数据服务,并充分作用于目标客户把控、企业管理运营、市场机遇洞察等多个业务层面,取得了良好的效果。
当下,企业发展逐渐进入精细化发展阶段,对于企业数据的依赖也越来越高。各行各业也在逐步加强对大数据的投入与应用,以提升生产效率和市场洞察,构建新的竞争力。这需要实现对大数据价值的深入挖掘,也对大数据产品和服务提出了更高的要求。不管市场如何改变,能在应用中为用户创造价值的产品,始终不会过时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14