
人工智能如何改变顾客消费体验
从市场营销到医疗,人工智能(AI)正在改变着一切。善解人意,交互式消费,创造更卓越的消费体验,这些在今年的假日营销中出现的新变化,拉开了人工智能为市场提供更好服务的序幕。
为了更好地了解人工智能对零售商的影响,我连线了IBM首任CMO,米歇尔·佩卢苏(Michelle Peluso)。佩卢苏在零售业有着资深经验,曾担任Gilt的首席执行官,也担任过花旗集团的全球消费营销和互联网的首席代表。佩卢苏关于Watson的人工智能将会如何改变零售商对消费者购物体验的影响提供了自己的见解。
维特勒:我们已经进入了假日购物季,现在影响市场营销的最大的变化是什么?
佩卢苏:这对于全体CMO、CEO来说,是一个激动人心的时刻。从6月份就开始为这个假日购物季筹备,运筹、采购、参与和拓展关系网这些工作早已开始——随着一切按部就班、渐入佳境,你就会看到它从计划书变成现实。多年来,我们见证了市场重心慢慢转向网上购物,也形成了越来越多的网上数据,这意味着CMO可以借此了解业务,并改善消费者的购物体验。然而,今年,我认为,最令营销人员兴奋的应当是人工智能终于有了改善CX(消费者体验)的机会。人工智能不仅授权营销人员随时随地使用消费数据,而且首次对暗数据也有所启用。
维特勒:营销人员如何使用人工智能来改善消费者体验呢?比如说?
佩卢苏:让我来给你举四个不同的例子。
1.人工智能驱动的礼品选择:零售商使用这个工具来帮助消费者挑选恰当的礼物,比如1800-Flowers.com就是这样做的。这个网购商创建了“GWYN”(礼物,当你需要),一个新的人工智能驱动的礼品礼宾,她就像你的“私人助理”,在人机交互中通过一系列问题了解你的偏好。她可以变得更聪明,并预测最适合某人的礼物类型,例如,客户键入“我正在为我的母亲寻找礼物”这样的需求,GWYN就会解读他们的问题,然后提出一系列有关场合,情绪和礼物对象的重要问题,以确保她为每个客户提供合适的,量身定制的礼物建议。重要的是,这不同于联合估计甚至是贝叶斯估计,因为当Watson用自然语言跟人互动时,她会边理解,边推理,边学习,然后将这种洞察力应用于礼物推荐。她从人机交互中提取数据,但同时也从许多其他来源提取信息,比如消费者购买趋势和购买行为数据。
2. 人工智能驱动的商品选择:北面(the North Face)是一个户外品牌,主营服装、设备和鞋。最近该零售商推出了一个由IBM的Watson系统支持的互动在线购物平台,这与North Face品牌使用技术改造零售体验的使命相吻合。现在,Fluid XPS提供的引擎,可以让客户用自然语言在线购物,获得直观的购物推荐。利用Watson的自然语言处理能力,XPS可以根据消费者对一系列问题的回答,来发现和改进产品选择,帮助消费者获得恰当的选择。例如,购物者详细回答了想要的夹克或户外活动的需求细节之后,XPS将询问关于诸如位置,温度或性别等因素的问题,以提供满足购物者使用条件和气候要求的推荐。
3. 人工智能驱动的供应缺货管理:零售商面临的关键性挑战是库存管理。理想情况下,您有恰好可以满足消费者需求的库存。如果你缺货,消费者可能不满意,而去别的店铺。如果你库存过剩,你又会丧失流动资金。那么人工智能如何解决这一问题呢?答案就是Watson正在做的:与零售商合作,监控天气、购买率和消费者行为,以更好地管理和监控供应链,保持适当规模的库存水平,避免缺货。我们使用的工具称为“IBM 智能商业”和“Watson订单优化”。
4. 人工智能驱动的消费者需求分心:人工智能正在改变营销人员如何洞察消费者的需求,以提供更多的相关信息。通过了解个人社交、运动、天气和行为等方面的资料,人工智能可以帮助营销人员更详细地了解消费者想要什么,需要什么。消费者的需求是动态的,不是静态的,所以需要一个洞察机器,来考虑这种动态,并将其纳入您的营销计划。人工智能可以理解、推理、学习,然后把它洞察到的规律加以应用。此外,人工智能可以在其学习过程中引入更多的信息,使得营销在个人层面更加符合私人定制的需要。例如,Watson人工智能包括音调分析器,可以通过增强智能,使系统更好地理解自然语言,并不断学习,以便您能够推理和调整产品。比如,对癌症患者,通过音调分析器,Watson的人工智能可以更好地评估消费者对不同治疗方案的反应,并根据患者个体差异,定制更有针对性的计划。在这一方面,人工智能的潜力是无限的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13