
人工智能如何改变顾客消费体验
从市场营销到医疗,人工智能(AI)正在改变着一切。善解人意,交互式消费,创造更卓越的消费体验,这些在今年的假日营销中出现的新变化,拉开了人工智能为市场提供更好服务的序幕。
为了更好地了解人工智能对零售商的影响,我连线了IBM首任CMO,米歇尔·佩卢苏(Michelle Peluso)。佩卢苏在零售业有着资深经验,曾担任Gilt的首席执行官,也担任过花旗集团的全球消费营销和互联网的首席代表。佩卢苏关于Watson的人工智能将会如何改变零售商对消费者购物体验的影响提供了自己的见解。
维特勒:我们已经进入了假日购物季,现在影响市场营销的最大的变化是什么?
佩卢苏:这对于全体CMO、CEO来说,是一个激动人心的时刻。从6月份就开始为这个假日购物季筹备,运筹、采购、参与和拓展关系网这些工作早已开始——随着一切按部就班、渐入佳境,你就会看到它从计划书变成现实。多年来,我们见证了市场重心慢慢转向网上购物,也形成了越来越多的网上数据,这意味着CMO可以借此了解业务,并改善消费者的购物体验。然而,今年,我认为,最令营销人员兴奋的应当是人工智能终于有了改善CX(消费者体验)的机会。人工智能不仅授权营销人员随时随地使用消费数据,而且首次对暗数据也有所启用。
维特勒:营销人员如何使用人工智能来改善消费者体验呢?比如说?
佩卢苏:让我来给你举四个不同的例子。
1.人工智能驱动的礼品选择:零售商使用这个工具来帮助消费者挑选恰当的礼物,比如1800-Flowers.com就是这样做的。这个网购商创建了“GWYN”(礼物,当你需要),一个新的人工智能驱动的礼品礼宾,她就像你的“私人助理”,在人机交互中通过一系列问题了解你的偏好。她可以变得更聪明,并预测最适合某人的礼物类型,例如,客户键入“我正在为我的母亲寻找礼物”这样的需求,GWYN就会解读他们的问题,然后提出一系列有关场合,情绪和礼物对象的重要问题,以确保她为每个客户提供合适的,量身定制的礼物建议。重要的是,这不同于联合估计甚至是贝叶斯估计,因为当Watson用自然语言跟人互动时,她会边理解,边推理,边学习,然后将这种洞察力应用于礼物推荐。她从人机交互中提取数据,但同时也从许多其他来源提取信息,比如消费者购买趋势和购买行为数据。
2. 人工智能驱动的商品选择:北面(the North Face)是一个户外品牌,主营服装、设备和鞋。最近该零售商推出了一个由IBM的Watson系统支持的互动在线购物平台,这与North Face品牌使用技术改造零售体验的使命相吻合。现在,Fluid XPS提供的引擎,可以让客户用自然语言在线购物,获得直观的购物推荐。利用Watson的自然语言处理能力,XPS可以根据消费者对一系列问题的回答,来发现和改进产品选择,帮助消费者获得恰当的选择。例如,购物者详细回答了想要的夹克或户外活动的需求细节之后,XPS将询问关于诸如位置,温度或性别等因素的问题,以提供满足购物者使用条件和气候要求的推荐。
3. 人工智能驱动的供应缺货管理:零售商面临的关键性挑战是库存管理。理想情况下,您有恰好可以满足消费者需求的库存。如果你缺货,消费者可能不满意,而去别的店铺。如果你库存过剩,你又会丧失流动资金。那么人工智能如何解决这一问题呢?答案就是Watson正在做的:与零售商合作,监控天气、购买率和消费者行为,以更好地管理和监控供应链,保持适当规模的库存水平,避免缺货。我们使用的工具称为“IBM 智能商业”和“Watson订单优化”。
4. 人工智能驱动的消费者需求分心:人工智能正在改变营销人员如何洞察消费者的需求,以提供更多的相关信息。通过了解个人社交、运动、天气和行为等方面的资料,人工智能可以帮助营销人员更详细地了解消费者想要什么,需要什么。消费者的需求是动态的,不是静态的,所以需要一个洞察机器,来考虑这种动态,并将其纳入您的营销计划。人工智能可以理解、推理、学习,然后把它洞察到的规律加以应用。此外,人工智能可以在其学习过程中引入更多的信息,使得营销在个人层面更加符合私人定制的需要。例如,Watson人工智能包括音调分析器,可以通过增强智能,使系统更好地理解自然语言,并不断学习,以便您能够推理和调整产品。比如,对癌症患者,通过音调分析器,Watson的人工智能可以更好地评估消费者对不同治疗方案的反应,并根据患者个体差异,定制更有针对性的计划。在这一方面,人工智能的潜力是无限的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28