
SAS日志检测
以前跑数据集市时,通常是每天自己批量跑,如果每天查看日志非常麻烦。今天给大家分享一段数据日志的检测代码,可以判断是是哪天出错了。如下图所示:
[xmy_1487668820/2017-05-05-16-06-49-9355.png]
程序如下:
%macro check_main_log(dizhi);
data rizhi_shujuji3;
infile "&dizhi." end=eof length=length;
input jilu $400. length;
run;
/*将错误的记录找出来,进行排列*/
data xiugai3;
set rizhi_shujuji3 end=w;
retain errcount 0;
jilu=left(trim(jilu));
if jilu=:"ERROR:" or jilu=:"WARNING:" or jilu=:"ERROR" or jilu=:"WARNING" then do;
errcount=errcount+1;
call symput("errcount",errcount);
end;
if w then do;
panduan=errcount;
end;
run;
data c3;
set xiugai3;
if panduan~=.;
%let panduan=panduan;
call symput("panduan",panduan);
run;
/*找出错误记录所在的行数*/
data xiugai3;
set xiugai3;
retain errfound 0;
if errcount~='' then errfound=errfound+1;
run;
/*排序记录排列,将错误数据记录保留下来*/
proc sort
data=xiugai3;
by errcount;
run;
%if &panduan.=0 %then %do;
data xggg;
length txtname $400. biaoshi $10. jilu $400.;
format errcount best12. errfound best12. up_data best12.;
errcount=0;
errfound=0;
up_data=&t.;
txtname="&dizhi.";
biaoshi="right";
jilu="运行无错";
label jilu='错误记录' errcount='序列' errfound='错误所在行数' txtname="检测文件名称" biaoshi="标识";
%end;
run;
/*建立一个基础数据集放到逻辑库main*/
data main.warning;
length txtname $400. biaoshi $10. jilu $400.;
format errcount best12. errfound best12. up_data best12.;
txtname="";
up_data="";
biaoshi="";
jilu="";
errcount="";
errfound="";
run;
/*将错误的记录放到main逻辑库*/
proc append
base=main.warning data=xggg force;
quit;
%if &panduan.>1 %then %do;
data xggg;
set xiugai3;
length txtname $400. biaoshi $10. jilu $400.;
format errcount best12. errfound best12. up_data best12.;
by errcount;
txtname="&dizhi";
up_data=&t.;
biaoshi="warning";
if first.errcount;
if errcount~=0;
drop panduan;
label jilu='错误记录' errcount='序列' errfound='错误所在行数' txtname="检测文件名称" biaoshi="标识";
%end;
run;
/*建立一个基础数据集放到逻辑库main*/
data main.warning;
length txtname $400. biaoshi $10. jilu $400.;
format errcount best12. errfound best12. up_data best12.;
txtname="";
up_data="";
biaoshi="";
jilu="";
errcount="";
errfound="";
run;
/*讲错误的记录放到main逻辑库*/
proc append
base=main.warning data=xggg force;
quit;
%mend;
********************以下是调用******************
data time;
format t $8.;
t=compress(year(today())*10000+month(today())*100+day(today()));
call symput('t',t);
run;
/*创建文件夹*/
data _null_;
new = dcreate("&t.","&input.");
new1 = dcreate("结果数据","&input.\&t.");
new2 = dcreate("错误数据集","&input.\&t.");
new3 = dcreate("log","&input.\&t.");
new4 = dcreate("main","&input.\&t.");
run;
%let canshu = &input.\&t.\错误数据集;
%let log = &input.\&t.\log;
%let main = &input.\&t.\main;
/*导出日志*/
DM 'LOG;log; FILE "&log.\main.txt" replace;';
run;
/*清除日志*/
DM 'log; "clear";';
/*创建逻辑库*/
libname canshu "&canshu.";
libname main "&main.";
/*调用检测日志的宏程序*/
%check_main_log(&log.\main.txt);
此程序在批量运行中特别方便,只要查看逻辑库main 里的warning数据集就可知道哪里出错。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23