京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据六大趋势
随着大数据的应用范围不断扩大,越来越多的公司开始部署大数据战略。同时,大数据技术也使得商业发展的速度更快、效率更高。通过大数据技术,企业可以更轻松地获取信息,以便进行更准确的决策。很多公司已经从大数据中获益,2017年大数据又将如何影响商业发展?
1随着数据量的不断增长,数据分析方法也将进一步提高。虽然SQL依然会是数据分析的标准方法,但是新兴分析工具也不可小觑。Spark是其中之一,它是大数据时代下的一个快速处理数据分析工作的框架,多家世界顶级的数据企业例如Google,Facebook等现已纷纷转向Spark框架。
2实时数据分析将获得更多关注
技术专家预测,2017年企业将需要实时数据分析工具,来帮助他们利用数据进行实时决策。实时计算一般都是针对海量数据进行的,一般要求为秒级。目前有几款数据分析工具可以提供实时访问数据,如GoogleAnalytics和Clicky。
3隐私问题将成最大挑战
高德纳资讯公司预测,到2018年,近50%的企业都将面临隐私泄露问题。事实上,欧盟实施新的隐私法规时,早已经预见到了这一点。大数据时代,解决用户隐私泄露问题,就是解决大数据发展与使用的问题。
4 人工智能将广泛应用
过去一年,我们亲眼见证了人工智能的爆发:无人驾驶汽车试驾成功、AlphaGo围棋获胜。随着人工智能技术日益成熟,未来公司企业将很大程度上依赖于这项技术。虚拟助手、机器人、智能顾问和自动驾驶汽车等多种技术都将得到广泛的应用。
5 认知技术将加速发展
认知技术是人工智能领域的产物,能完成以往只有人能够完成的任务。包括计算机视觉、机器学习、自然语言处理、机器人技术和语言识别技术等。
随着人工智能的发展,认知技术的重要性越来越受到人们的认可。只要人们认识到大数据和分析学之间的紧密联系,就会发现认知计算和分析学一样,都是企业发展不可或缺的技术。
6“大”数据将不复存在
大数据的发展面临共享难度大、垄断程度高、融合能力差、应用价值低以及安全风险大等一系列制约因素。因此一些专家认为,数据的“量”已经不再是数据的重点了。与其一味地追求数据量,还不如好好研究如何提高手头数据的利用效率。
大数据将被分割成数据块,这将打破行业领域对信息流动的限制,通过对不同类型、不同领域数据的跨界集聚,极大地改变信息的生产、传播、加工和组织方式,进而给各个行业的创新发展带来新的驱动力,推动各个领域的彻底变革和再造。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30