
R语言学习之矩阵
很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又有很多(属性)列。如果把一组对象~属性表示成矩阵,我们就能很容易取出每个对象对应的某个属性了,并且根据线性代数方法考察两个对象之间的联系(相似性)。矩阵的行列数我们一般称作维数。
对于矩阵而言,我们当然想实现以下操作与功能:
矩阵的加减、乘除运算
矩阵的行列切片
最值的快速获取
线性代数运算
好在R语言中的矩阵可以很轻易帮我们实现这些功能,有了这一神兵利器,我们就可以游刃有余地操作应该算是数据分析的基本单位——矩阵了。
创建矩阵
R中直接调用函数matrix()可以快速自定义矩阵,下面一行命令可以快速创建一个4行3列的矩阵:
>a<-matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
这里相当于先创建一个向量,再将其转化为一个4x3的矩阵,bynow=TRUE表示会按照把第一行排满,接着排第二行。
还有一些其它小技巧,比如有时候我们需要初始化一个矩阵,以便于后面对其进行赋值:
> a1<-matrix(0,3,4)
> a1
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
矩阵行、列、元素的选取(切片)
取第一行第二列元素
> a[1,2]
[1] 2
取第一行元素,这与Matlab很相像
> a[1,]
[1] 1 2 3
取第一行除了第二个元素之外的元素
> a[1,-2]
[1] 1 3
取第一列元素
> a[,1]
[1] 1 4 7 10
取第一列除了第二个元素之外的元素
> a[-2,1]
[1] 1 7 10
矩阵全部元素
> a[,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
矩阵的基本运算
这里创建一个新的矩阵b、c1,b与a的维数相同,c1的列、行数与a的行、列数分别相等,便于做实验。
> b<-matrix(c(13:24),nrow=4,ncol=3,byrow = TRUE)
> b
[,1] [,2] [,3]
[1,] 13 14 15
[2,] 16 17 18
[3,] 19 20 21
[4,] 22 23 24
> c1<-matrix(c(13:24),nrow=3,ncol=4,byrow = TRUE)
> c1
[,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24
获取矩阵维数
> dim(a)
[1] 4 3
加减法运算
矩阵的加减法运算表示两个矩阵对应元素分别进行加减法运算,返回两个矩阵对应元素分别进行加减法运算的矩阵。当然了,矩阵加减法运算前提是两个矩阵的维数必须一样,否则会报错。
> a+b
[,1] [,2] [,3]
[1,] 14 16 18
[2,] 20 22 24
[3,] 26 28 30
[4,] 32 34 36
乘除法运算
矩阵的乘除法运算表示两个矩阵对应元素分别进行乘除法运算,返回两个矩阵对应元素分别进行乘除法运算的矩阵。当然了,矩阵乘除法运算前提是两个矩阵的维数必须一样,否则会报错。
> a*b
[,1] [,2] [,3]
[1,] 13 28 45
[2,] 64 85 108
[3,] 133 160 189
[4,] 220 253 288
还有就是矩阵的乘法,要求是前面矩阵的列数等于后面矩阵的列数,返回一个左边矩阵行数x右边矩阵列数的矩阵。
> a%*%c1
[,1] [,2] [,3] [,4]
[1,] 110 116 122 128
[2,] 263 278 293 308
[3,] 416 440 464 488
[4,] 569 602 635 668
线性代数运算
R语言提供了很多用于线性代数运算的函数,常用的列出如下:
eigen() #求特征值和特征向量
solve() #求逆矩阵
chol() #Choleski分解
svd() #奇异值分解
qr() #QR分解
det() #求行列式
dim() #给出行列数
t() #矩阵转置
矩阵的拼接
R语言矩阵的拼接主要用到两个函数,rbind()、cbind()
按行拼接要求两个矩阵列数要相同rbind()
> rbind(a,b)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24
按列拼接要求两个矩阵行数要相同cbind()
> cbind(c1,matrix(c(1:6),nrow = 3,byrow = TRUE))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 13 14 15 16 1 2
[2,] 17 18 19 20 3 4
[3,] 21 22 23 24 5 6
其它函数的灵活结合
矩阵相关计算求法还可以灵活应用其它函数,比如求和函数sum(),平均值函数mean(),最值函数max()等。
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
> max(a)
[1] 12
第一行最大值
>max(a[1,])
[1] 3
> max(a[,1])
[1] 10
对第一行求和
> sum(a[1,])
[1] 6
> mean(a[,1])
[1] 5.5
还有就是结合apply()函数,后面会讲到。
用法,举个例子。apply(Matrix,1,FUN=mean),这里,FUN=mean计算矩阵Matrix每一行的平均值,以向量的形式返回,中间的参数‘1’表示求每一行均值,如果是‘2’,表示求每一列均值
比如:
求a每一行平均值
> apply(a,1,mean)
[1] 2 5 8 11
对a每一列分别求和
> apply(a,2,sum)
[1] 22 26 30
好了,关于矩阵就讲到这里,希望对你们有用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27