京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在统计中的应用初探
大数据是信息时代的必然产物,是人们在日常工作、学习、生活中,使用以现代网络、特别是以互联网为特征的现代信息技术和其他各种电子计量设备而产生的海量信息。对海量信息的采集、存储、分析、整合、控制而得到的数据就是大数据。中央《关于深化统计管理体制改革提高统计数据真实性的意见》中指出,大力推动大数据在政府统计工作中的应用,将电子化行政记录和各类交易、交互、传感等大数据作为政府统计基础数据的重要来源,努力构建现代化新型统计调查体系。
大数据统计应用有什么意义?还有哪些问题和障碍?如何加快大数据在统计工作中的应用?在此进行探讨交流。
大数据应用广泛
大数据能够更加客观真实地记载经济社会的发展情况。在现代社会,人与人之间、人与单位之间、单位与单位之间,甚至地区与地区之间、国与国之间发生的交流和交易行为都有可能在计算机等各种电子设备上留下记录,由于它们都是电子化的信息,没有掺入任何人为的干扰因素,因此,对这样的信息进行发掘、加工、整理而得出的大数据能够更加客观真实地反映社会经济发展情况。同时,实现大数据统计应用也是遏制统计造假、弄虚作假行为的重要途径。
大数据能够最大限度地拓展现行统计调查制度所无法涉及到的领域。大数据能轻而易举地解决常规统计调查无法涉及到的、各种复杂多变的行业和领域的统计,因为大数据不但量大,其涵盖面也十分广泛,任何时候、任何地方、任何人、任何单位,只要发生了互动行为就要留下“痕迹”,而对这些信息进行加工整理获得的大数据必然能够有效解决现行统计和国民经济核算资料不全的问题。
大数据分析应用已经发挥出了显著的社会经济效益。目前,大数据分析应用已经有了实质性的进展,例如,商贸领域通过对商品销售大数据分析,能够发现同一种产品在不同地区的销量、销售的时间以及购买产品的客户群,然后作出市场预测,制定出新的订货计划,取得可观的经济效益。在金融、保险、交通等行业以及财政、教育等领域,通过大数据分析,能够发现新的商机或管理模式,并寻找到改进服务的最佳途径。
大数据如何应用于统计
就目前的情况,要真正实现大数据在统计工作中的应用尚面临着很多问题与障碍,如口径不一致、范围不相同、标准不统一、程序不规范、信息不共享等,这些或将成为大数据统计应用的“拦路虎”。在此,笔者提出几点粗浅的建议。
建立机构,统一管理大数据开发应用工作。大数据就像是一座巨大的“宝藏”,如果不加以开发就无法发挥其作用。但是,如果无序开发,也会使得这笔宝贵的财富得不到有效利用,造成浪费,甚至产生负面效应。因此,要真正实现大数据统计应用,应建立一个专门的管理机构,加强组织领导,统一管理大数据的开发、应用,保障数据信息安全,在某些领域、某些行业逐步实现以大数据取代常规统计调查数据。同时,制定周密计划、明确职责分工、选择工作路径、加强日常监管,从而实现对大数据这一宝贵资源的有效利用。
统一标准,实现大数据在统计上的可比性。统计是一门科学,是一项十分严谨的工作。因此,统计指标的含义、口径、范围、来源渠道、计算方法、计量单位等应该统一,只有这样才具有可比性。要实现大数据统计应用,提高统计工作的科学性,应该制定统一的标准,如在生产、流通、服务等领域,界定哪些信息属于可在统计上应用的大数据,如何将大数据的口径、范围调整为常规统计所需的口径和范围,如何对大数据的海量信息进行甄别、筛选,然后挖掘出统计核算所需要的、且常规统计所难以取得的资料。只有在这些方面统一标准,才能真正实现大数据在统计中的应用。
资源共享,畅通大数据信息来源的渠道。由于目前大部分单位都认为本部门的数据、行政记录等信息是商业秘密,因而,出于“保密”等原因,一般不对外提供,即便是政府统计部门需要,一些单位也是顾虑重重。因此,要实现大数据在统计上的应用,必须打破单位之间信息“壁垒”,真正实现信息资源共享。只有这样,才能够最大限度地满足常规统计、尤其是国民经济核算的数据需求。当然,为防止泄密,有必要制定一个关于大数据开发利用的制度,严格规定对外发布的范围,保障个体信息资料的安全。
创造条件,为大数据开发应用铺平道路。大数据应用离不开现代信息技术和网络技术,更离不开大数据发掘、加工、整理和分析的人才。因此,应该大力培养一批大数据应用、尤其是大数据分析方面的人才,为将大数据广泛应用于政府统计、宏观管理、企业经营等方面奠定基础。要鼓励高校和科研机构有针对性地开发大数据应用软件,为大数据分析提供帮助。要通过国内培养、国外委培等途径,培养一批大数据分析师,除开展大数据分析外,还要将大数据分析的理念、思路广泛应用于宏观管理和微观经营之中,发挥出大数据统计应有社会经济效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28