
R语言中的数组和列表
R语言中的数组与其它语言数组类似,它是一种高维的数据结构。维数过高运算会很不方便,所以用的很少,这里介绍是本着不落下任何知识点的目的。万一以后遇到了,虽然不方便,还是可以进行运算的。当然了,矩阵是二维数组,是数组的一种特殊形式。R中的列表是一种特殊的数组,每个元素又可以是一个列表可以含有多个元素,里面可以包含各种数据类型,故功能非常强大。
数组
数组有一个维数向量,可以定义数组的维数,通过array()进行创建数组如下:
> arr <- array(c(1:24),dim = c(2,3,4))
> dim(arr)
[1] 2 3 4
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr)
[1] "array"
以上创建语句,第一个参数表示用1:24作为数组的数据,dim = c(2,3,4)表示数组维数为2x3x4。
我们也可以用下面这种方式定义数组:
> arr1 <- c(1:24)
> dim(arr1) <- c(2,3,4)
> arr1
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr1)
[1] "array"
这种方式就是先指定向量c(1:24)为数组的数据,再指定其维数为2x3x4,最后其类型仍然为"array"。
矩阵的取块,其实与上节讲的矩阵取值一样。比如:
> arr[1,,]
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23
我们可以将数组转化为矩阵,比如我们尝试将arr这个数组转化为矩阵:
a <- as.matrix(arr)
猜测一下,a会长什么样?我们看一下,哈哈!
> a
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
[11,] 11
[12,] 12
[13,] 13
[14,] 14
[15,] 15
[16,] 16
[17,] 17
[18,] 18
[19,] 19
[20,] 20
[21,] 21
[22,] 22
[23,] 23
[24,] 24
> dim(a)
[1] 24 1
竟然是一个24x1的矩阵,没想到吧。
列表
R中用list()创建列表,比如
> li <- list(c(1:3),c('a','b'),c(4:6))
> li
[[1]]
[1] 1 2 3
[[2]]
[1] "a" "b"
[[3]]
[1] 4 5 6
这个列表包含三个元素,分别是c(1:3),c('a','b'),c(4:6),而每个元素又是一个数据集合,我现在要取第一个元素的第三个元素(就是3)
> li[[1]][1]
[1] 1
取第一个元素,就是
> li[1]
[[1]]
[1] 1 2 3
列表的每个元素还是列表,同样说明列表可以嵌套。具体定位到最里层元素就是相应数据类型了:
> class(li[[1]][1])
[1] "integer"
> li[[2]][1]
[1] "a"
> class(li[[2]][1])
[1] "character"
我们可以给列表每个元素取一个名字
> names(li) <- c('a1','a2','a3')
> li
$a1
[1] 1 2 3
$a2
[1] "a" "b"
$a3
[1] 4 5 6
为什么取名字呢,这样我们引用时可以直接利用美元符号“$”+名字‘a1’,’a2‘,‘a3’,而不需要写[[1]]那么麻烦了。
> li$a1
[1] 1 2 3
> li$a2[1]
[1] "a"
其实,给列表起名字还有更方便之处,这才是最终目的:可以在绑定数据后,直接引用列表元素名即可。
绑定列表用attach()
> attach(li)
然后,就可以直接引用列表元素名了。
> a1
[1] 1 2 3
> a2[2]
[1] "b"
关于R语言中的数组和列表(主要是列表)用法很灵活多样,在以后我们会有实战应用会用到。这次,大家把今天介绍的好好练习就好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10