京公网安备 11010802034615号
经营许可证编号:京B2-20210330
推进大数据在地方审计工作中的应用
随着大数据时代的到来,以电子数据为代表的信息资源大集中模式逐渐成为各类审计信息存储的主流。2015年召开的全国审计工作会议提出:“十三五”时期要加快实施“金审三期”工程,拓展大数据技术运用,形成独特的“国家审计云”。当前,推进实施大数据审计的实践应用,已成为地方审计机关亟待解决的现实课题。
目前大数据审计面临的主要问题
1.大数据审计队伍急需加强。随着审计领域不断放大,外延不断扩展,审计人员在完成既定任务之外难有精力对数据进行深层次的挖掘。同时,目前审计队伍中掌握数据采集、数据分析等技术人才严重缺乏。
2.数据管理的碎片化和大数据采集标准的不统一。一方面各单位、各部门之间数据不共享,存在“信息孤岛”效应,另一方面各级审计机关对大数据的采集缺乏统一标准,导致数据利用效率较低,审计部门无法全面准确的进行数据对比。
3.大数据审计共享平台急需建立。各地已建立的部分数据分析模型,目前还缺乏成果共享和培训推广机制。另外,基层审计机关没有自己的规模化制式化数据存储中心,很难用大数据共享平台的方式,为一线审计大量储备和提供有效的“攻城利器”和“弹药仓库”。
4.地方审计机关对大数据审计认识需要进一步提高。虽然国务院已将大数据审计列入审计信息化工作重点,但在地方审计实践中,数据审计仍是一种可选审计方式。由于数据审计没有被列入《审计法》及《审计准则》等法规中,多数地方审计机关对大数据的认识仍比较初级化,审计人员认为可以使用现场审计实施系统查阅浏览电子账就已足够,缺乏对财务数据和业务数据进行深度挖掘与关联分析的意识与能力,导致基层审计人员在大数据分析上缺少思路和技术创新。
5.数据分析团队的组织方式需要转变。目前,数据分析团队主要是各参审单位的计算机骨干和业务骨干临时组成,这种方式影响了数据分析的效率和质量,特别是在宏观分析、政策执行情况分析等方面,临时组成的数据分析团队受软硬件环境、人员知识结构等因素的影响,难以完成系统性、宏观性的分析工作。
推进大数据审计应用的对策建议
1.提高思想认识。强化审计人员运用计算机审计的意识与兴趣培养,用宏观的视野来看待大数据,不再局限于被审单位的点滴数据,善于采集各相关方面的数据,从数据挖掘中提取有用信息和发现问题线索,真正做到用数据说话。
2.实现跨界融合、打造统一大数据审计平台。互联网思维的精髓就在于跨界与融合,一方面要运用行政倒逼、利益调整等多种手段打破“数据孤岛”,实现数据按需、契约、有序、安全式开放,形成跨部门数据共享机制,为实施数据审计提供源源不断的大数据。另一方面,要将现有成熟的审计模型和方法整合到大数据审计平台中,在审计实践中运用联网跟踪审计平台,探索建立经常性审计监督机制。
3.加强复合型人才培养。一是组织财政审计人员参加国家审计署举办的各类培训,不断提升计算机实用技能;二是地方审计机关内部要定期组织计算机学习,以点带面来触动、影响全体审计人员;三是引进计算机专业人员,把技术精湛、热爱审计事业的计算机人才吸纳入国家审计机关,通过审计实践打造出一支能应对大数据时代的数字化审计人才队伍。
4.创新审计工作思路。审计机关要履行好审计监督职责,实现大数据环境下审计监督全覆盖,必须要积极创新审计工作思路,走科技强审之路。从审计观念和审计方式转变上认识数字化审计工作,依托计算机技术推进审计方法、方式和手段的创新,提高审计监督的有效性。
5.保障数据安全性。大数据在为政府治理提供方便的同时,也会给个人隐私、企业机密、政府公信乃至国家安全带来挑战。要加快审计数据应用安全的立法进程,加大网络与信息安全投入,着力加强审计数据保护关键技术手段的建设,确保审计数据的安全、保密。
6.打造高效的数据分析团队。在加强复合型人才培养的同时,要通过聘请相关行业专家加入到数据分析团队中来,通过数据分析团队大胆创新和尝试运用新型信息技术手段,通过推进引领数字化的审计方式,实现审计一线作业与后台数据分析一体化,不断提高地方审计机关的整体工作效率,扩大大数据审计技术应用的示范效应。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12