
推进大数据在地方审计工作中的应用
随着大数据时代的到来,以电子数据为代表的信息资源大集中模式逐渐成为各类审计信息存储的主流。2015年召开的全国审计工作会议提出:“十三五”时期要加快实施“金审三期”工程,拓展大数据技术运用,形成独特的“国家审计云”。当前,推进实施大数据审计的实践应用,已成为地方审计机关亟待解决的现实课题。
目前大数据审计面临的主要问题
1.大数据审计队伍急需加强。随着审计领域不断放大,外延不断扩展,审计人员在完成既定任务之外难有精力对数据进行深层次的挖掘。同时,目前审计队伍中掌握数据采集、数据分析等技术人才严重缺乏。
2.数据管理的碎片化和大数据采集标准的不统一。一方面各单位、各部门之间数据不共享,存在“信息孤岛”效应,另一方面各级审计机关对大数据的采集缺乏统一标准,导致数据利用效率较低,审计部门无法全面准确的进行数据对比。
3.大数据审计共享平台急需建立。各地已建立的部分数据分析模型,目前还缺乏成果共享和培训推广机制。另外,基层审计机关没有自己的规模化制式化数据存储中心,很难用大数据共享平台的方式,为一线审计大量储备和提供有效的“攻城利器”和“弹药仓库”。
4.地方审计机关对大数据审计认识需要进一步提高。虽然国务院已将大数据审计列入审计信息化工作重点,但在地方审计实践中,数据审计仍是一种可选审计方式。由于数据审计没有被列入《审计法》及《审计准则》等法规中,多数地方审计机关对大数据的认识仍比较初级化,审计人员认为可以使用现场审计实施系统查阅浏览电子账就已足够,缺乏对财务数据和业务数据进行深度挖掘与关联分析的意识与能力,导致基层审计人员在大数据分析上缺少思路和技术创新。
5.数据分析团队的组织方式需要转变。目前,数据分析团队主要是各参审单位的计算机骨干和业务骨干临时组成,这种方式影响了数据分析的效率和质量,特别是在宏观分析、政策执行情况分析等方面,临时组成的数据分析团队受软硬件环境、人员知识结构等因素的影响,难以完成系统性、宏观性的分析工作。
推进大数据审计应用的对策建议
1.提高思想认识。强化审计人员运用计算机审计的意识与兴趣培养,用宏观的视野来看待大数据,不再局限于被审单位的点滴数据,善于采集各相关方面的数据,从数据挖掘中提取有用信息和发现问题线索,真正做到用数据说话。
2.实现跨界融合、打造统一大数据审计平台。互联网思维的精髓就在于跨界与融合,一方面要运用行政倒逼、利益调整等多种手段打破“数据孤岛”,实现数据按需、契约、有序、安全式开放,形成跨部门数据共享机制,为实施数据审计提供源源不断的大数据。另一方面,要将现有成熟的审计模型和方法整合到大数据审计平台中,在审计实践中运用联网跟踪审计平台,探索建立经常性审计监督机制。
3.加强复合型人才培养。一是组织财政审计人员参加国家审计署举办的各类培训,不断提升计算机实用技能;二是地方审计机关内部要定期组织计算机学习,以点带面来触动、影响全体审计人员;三是引进计算机专业人员,把技术精湛、热爱审计事业的计算机人才吸纳入国家审计机关,通过审计实践打造出一支能应对大数据时代的数字化审计人才队伍。
4.创新审计工作思路。审计机关要履行好审计监督职责,实现大数据环境下审计监督全覆盖,必须要积极创新审计工作思路,走科技强审之路。从审计观念和审计方式转变上认识数字化审计工作,依托计算机技术推进审计方法、方式和手段的创新,提高审计监督的有效性。
5.保障数据安全性。大数据在为政府治理提供方便的同时,也会给个人隐私、企业机密、政府公信乃至国家安全带来挑战。要加快审计数据应用安全的立法进程,加大网络与信息安全投入,着力加强审计数据保护关键技术手段的建设,确保审计数据的安全、保密。
6.打造高效的数据分析团队。在加强复合型人才培养的同时,要通过聘请相关行业专家加入到数据分析团队中来,通过数据分析团队大胆创新和尝试运用新型信息技术手段,通过推进引领数字化的审计方式,实现审计一线作业与后台数据分析一体化,不断提高地方审计机关的整体工作效率,扩大大数据审计技术应用的示范效应。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10