京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何将连续变量创建为变量
要创建分类变量inccat:
从数据编辑器窗口的菜单中选择:
转换> 可视离散化...
在初始的“可视离散化”对话框中,选择要为其创建新的离散化变量的刻度变量和/或 有序变量。离散化是指取两个或多个连续值并将其分组为同一类别。 由于可视离散化依赖于数据文件中的实际值以帮助您做出良好的离散化选择,因 而其需要先读取数据文件。如果您的数据文件包含大量个案,则完成此过程将需要一 段时间,因此,这一初始对话框还允许您限制要读取(“扫描”)的个案数。我们 的样本数据文件不需要此限制。尽管此数据文件包含6,000 多个案,但扫描这些 个案不需要太长时间。
将Household income in thousands [income] 从“变量”列表中拖放到“要离散的变量”列表中,然后单击继续。
在“可视离散化”主对话框中,选择“已扫描的变量列表”中的Household income in
thousands [income]。直方图显示了所选变量的分布(在此例中,分布严重偏斜)。
输入inccat2 作为新的离散化变量名称,输入Income category [in thousands] 作
为变量标签。
单击生成分割点。
选择等宽度间隔。
输入25 作为第一个分割点的位置,输入3 作为分割点数量,并输入25 作为宽度。离散化类别的数量比分割点数量多一个。因此在本示例中,新的离散化变量将具有四个类别,其中前三个类别中每个包含的范围为25(千),最后一个类别包含最高割点值75(千)以上的所有值。
单击应用。
网格中当前显示的值表示所定义的分割点,这些分割点是每个类别的上端点。直方图中的垂直线还指示了各分割点的位置。
默认情况下,这些分割点值将包含在相应的类别中。例如,第一个值25 将包含所有小于或等于25 的值。但在本示例中,我们希望这些类别对应于小于25、25–49、50–74 以及75 或更高。
在上端点组中,选择排除(<)。
然后单击生成标签。
这将自动为每个类别生成描述性值标签。由于为新的离散化变量指定的实际值只是从1开始的连续整数,因此这些值标签可能非常有用。还可以在网格中手动输入或更改分割点和标签,通过在直方图中拖放分割点线来更改分割点位置以及通过将分割点线拖出直方图来删除分割点。数据分析师培训
单击确定以创建新的离散化变量。
新变量将显示在数据编辑器中。由于该变量将添加到文件的末尾,因此显示在数据视图的最右侧一列,变量视图的最后一行中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27