
如何将连续变量创建为变量
要创建分类变量inccat:
从数据编辑器窗口的菜单中选择:
转换> 可视离散化...
在初始的“可视离散化”对话框中,选择要为其创建新的离散化变量的刻度变量和/或 有序变量。离散化是指取两个或多个连续值并将其分组为同一类别。 由于可视离散化依赖于数据文件中的实际值以帮助您做出良好的离散化选择,因 而其需要先读取数据文件。如果您的数据文件包含大量个案,则完成此过程将需要一 段时间,因此,这一初始对话框还允许您限制要读取(“扫描”)的个案数。我们 的样本数据文件不需要此限制。尽管此数据文件包含6,000 多个案,但扫描这些 个案不需要太长时间。
将Household income in thousands [income] 从“变量”列表中拖放到“要离散的变量”列表中,然后单击继续。
在“可视离散化”主对话框中,选择“已扫描的变量列表”中的Household income in
thousands [income]。直方图显示了所选变量的分布(在此例中,分布严重偏斜)。
输入inccat2 作为新的离散化变量名称,输入Income category [in thousands] 作
为变量标签。
单击生成分割点。
选择等宽度间隔。
输入25 作为第一个分割点的位置,输入3 作为分割点数量,并输入25 作为宽度。离散化类别的数量比分割点数量多一个。因此在本示例中,新的离散化变量将具有四个类别,其中前三个类别中每个包含的范围为25(千),最后一个类别包含最高割点值75(千)以上的所有值。
单击应用。
网格中当前显示的值表示所定义的分割点,这些分割点是每个类别的上端点。直方图中的垂直线还指示了各分割点的位置。
默认情况下,这些分割点值将包含在相应的类别中。例如,第一个值25 将包含所有小于或等于25 的值。但在本示例中,我们希望这些类别对应于小于25、25–49、50–74 以及75 或更高。
在上端点组中,选择排除(<)。
然后单击生成标签。
这将自动为每个类别生成描述性值标签。由于为新的离散化变量指定的实际值只是从1开始的连续整数,因此这些值标签可能非常有用。还可以在网格中手动输入或更改分割点和标签,通过在直方图中拖放分割点线来更改分割点位置以及通过将分割点线拖出直方图来删除分割点。数据分析师培训
单击确定以创建新的离散化变量。
新变量将显示在数据编辑器中。由于该变量将添加到文件的末尾,因此显示在数据视图的最右侧一列,变量视图的最后一行中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15