京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在我们处理一些时间序列数据时,经常会碰到各种时间数据,比如“2016-03-03”。很多时候我们需要提取出其中的年、月、日甚至是小时、分、秒,从而可以方便的进行比较、筛选等操作。如果我们自己去实现上述功能,可能会写一个字符串的提取函数,来确定相应的时间单位值。但是,由于时间数据格式多样,总会碰到一些问题。还好lubridate这个包已经帮我实现了各种功能,功能简单但方便快捷,下面进行介绍:
library(lubridate)
返回时间值
首先,lubridate函数的方便之处在于无论年月日之间以什么间隔符分隔,它总能找到正确的值且返回的是数字值,比如:
> year("2016-10-24")
[1] 2016
>year("2016/10/24")
[1] 2016
> month("2016/10/24")
[1] 10>
day("2016/10/24")
[1] 24
我们可以看到,直接用year(),month(),day()函数就可以提取相应的数值,同样的函数还有hour(),minute(),second()等:
> hour("2011-08-10 14:20:01")
[1] 14>
minute("2011-08-10 14:20:01")
[1] 20>
second("2011-08-10 14:20:01")
[1] 1
同时,lubridate还提供了函数帮助处理不同排列顺序的年月日数据:
> ymd("20110604")
[1] "2011-06-04"
> mdy("06-04-2011")
[1] "2011-06-04"
> dmy("04/06/2011")
[1] "2011-06-04"
ymd,mdy,dmy分别表示了三种常见的年月日排列方式,通过这种方式我们就可以把不同的日期数据都转化为标准的日期数据。
时间数据运算
此外我们还可以用对时间数据进行加减,这也是很有用的,因为有时候我们要判断两个时间之间的间隔是否超过了某个值:
> minutes(2) ## period
[1] "2M 0S"
> dminutes(2) ## duration
[1] "120s (~2 minutes)"
我们可以看到有两个函数:minutes(),dminutes(),minutes(2)函数表示的2个整分钟的概念,而dminutes()则是具体120秒的概念。这两者之间有何不同呢?可以看下面的例子:
> leap_year(2011) ## regular year
[1] FALSE
> ymd(20110101) + dyears(1)
[1] "2012-01-01"
> ymd(20110101) + years(1)
[1] "2012-01-01"
> leap_year(2012) ## leap year
[1] TRUE
> ymd(20120101) + dyears(1)
[1] "2012-12-31"
ymd(20120101) + years(1)
> [1] "2013-01-01"
leap_year()函数可以判断是否是闰年,而通过上述返回结果我们可以知道,因为dyears(1)表示的365天,所以从2012-01-01一个dyears(1),返回值是2012-12-31,而years(1)则是一个整年的概念,无论是闰年还是非闰年,加上一个years(1)都能返回下一年的相同月日的那一天,在这个例子里就反悔了2013-01-01。
时间区间
lubridate还允许我们定义一个时间区间,例如:
> arrive<-"2011-08-10 14:00:00"
> leave<-"2011-08-10 14:00:05"
> int<-interval(arrive,leave)
[1] 2011-08-10 14:00:00 UTC--2011-08-10 14:00:05 UTC
两个时间段是由--相连的,UTC表示时区,lubridate允许我们在给时间数据赋值的时候加上时区这一项,由于在日常生活中使用可能性较小,这篇文章里就不涉及了。数据分析师培训
> arrive1<-"2011-08-10 13:50:00"
> leave1<-"2011-08-10 14:00:09"
> int1<-interval(arrive1,leave1)
> int1 %within% int
[1] FALSE
> int %within% int1
[1] TRUE
有了时间区间的定义,我们还可以判断一个时间区间是否在另一个时间区间里面,用"%within%"操作符。
> as.period(int1)
[1] "10M 9S"
> int1 / dminutes(1)
[1] 10.15
如上还可以查看或计算一个时间区间的长度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27