
在我们处理一些时间序列数据时,经常会碰到各种时间数据,比如“2016-03-03”。很多时候我们需要提取出其中的年、月、日甚至是小时、分、秒,从而可以方便的进行比较、筛选等操作。如果我们自己去实现上述功能,可能会写一个字符串的提取函数,来确定相应的时间单位值。但是,由于时间数据格式多样,总会碰到一些问题。还好lubridate这个包已经帮我实现了各种功能,功能简单但方便快捷,下面进行介绍:
library(lubridate)
返回时间值
首先,lubridate函数的方便之处在于无论年月日之间以什么间隔符分隔,它总能找到正确的值且返回的是数字值,比如:
> year("2016-10-24")
[1] 2016
>year("2016/10/24")
[1] 2016
> month("2016/10/24")
[1] 10>
day("2016/10/24")
[1] 24
我们可以看到,直接用year(),month(),day()函数就可以提取相应的数值,同样的函数还有hour(),minute(),second()等:
> hour("2011-08-10 14:20:01")
[1] 14>
minute("2011-08-10 14:20:01")
[1] 20>
second("2011-08-10 14:20:01")
[1] 1
同时,lubridate还提供了函数帮助处理不同排列顺序的年月日数据:
> ymd("20110604")
[1] "2011-06-04"
> mdy("06-04-2011")
[1] "2011-06-04"
> dmy("04/06/2011")
[1] "2011-06-04"
ymd,mdy,dmy分别表示了三种常见的年月日排列方式,通过这种方式我们就可以把不同的日期数据都转化为标准的日期数据。
时间数据运算
此外我们还可以用对时间数据进行加减,这也是很有用的,因为有时候我们要判断两个时间之间的间隔是否超过了某个值:
> minutes(2) ## period
[1] "2M 0S"
> dminutes(2) ## duration
[1] "120s (~2 minutes)"
我们可以看到有两个函数:minutes(),dminutes(),minutes(2)函数表示的2个整分钟的概念,而dminutes()则是具体120秒的概念。这两者之间有何不同呢?可以看下面的例子:
> leap_year(2011) ## regular year
[1] FALSE
> ymd(20110101) + dyears(1)
[1] "2012-01-01"
> ymd(20110101) + years(1)
[1] "2012-01-01"
> leap_year(2012) ## leap year
[1] TRUE
> ymd(20120101) + dyears(1)
[1] "2012-12-31"
ymd(20120101) + years(1)
> [1] "2013-01-01"
leap_year()函数可以判断是否是闰年,而通过上述返回结果我们可以知道,因为dyears(1)表示的365天,所以从2012-01-01一个dyears(1),返回值是2012-12-31,而years(1)则是一个整年的概念,无论是闰年还是非闰年,加上一个years(1)都能返回下一年的相同月日的那一天,在这个例子里就反悔了2013-01-01。
时间区间
lubridate还允许我们定义一个时间区间,例如:
> arrive<-"2011-08-10 14:00:00"
> leave<-"2011-08-10 14:00:05"
> int<-interval(arrive,leave)
[1] 2011-08-10 14:00:00 UTC--2011-08-10 14:00:05 UTC
两个时间段是由--相连的,UTC表示时区,lubridate允许我们在给时间数据赋值的时候加上时区这一项,由于在日常生活中使用可能性较小,这篇文章里就不涉及了。数据分析师培训
> arrive1<-"2011-08-10 13:50:00"
> leave1<-"2011-08-10 14:00:09"
> int1<-interval(arrive1,leave1)
> int1 %within% int
[1] FALSE
> int %within% int1
[1] TRUE
有了时间区间的定义,我们还可以判断一个时间区间是否在另一个时间区间里面,用"%within%"操作符。
> as.period(int1)
[1] "10M 9S"
> int1 / dminutes(1)
[1] 10.15
如上还可以查看或计算一个时间区间的长度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15