
在我们处理一些时间序列数据时,经常会碰到各种时间数据,比如“2016-03-03”。很多时候我们需要提取出其中的年、月、日甚至是小时、分、秒,从而可以方便的进行比较、筛选等操作。如果我们自己去实现上述功能,可能会写一个字符串的提取函数,来确定相应的时间单位值。但是,由于时间数据格式多样,总会碰到一些问题。还好lubridate这个包已经帮我实现了各种功能,功能简单但方便快捷,下面进行介绍:
library(lubridate)
返回时间值
首先,lubridate函数的方便之处在于无论年月日之间以什么间隔符分隔,它总能找到正确的值且返回的是数字值,比如:
> year("2016-10-24")
[1] 2016
>year("2016/10/24")
[1] 2016
> month("2016/10/24")
[1] 10>
day("2016/10/24")
[1] 24
我们可以看到,直接用year(),month(),day()函数就可以提取相应的数值,同样的函数还有hour(),minute(),second()等:
> hour("2011-08-10 14:20:01")
[1] 14>
minute("2011-08-10 14:20:01")
[1] 20>
second("2011-08-10 14:20:01")
[1] 1
同时,lubridate还提供了函数帮助处理不同排列顺序的年月日数据:
> ymd("20110604")
[1] "2011-06-04"
> mdy("06-04-2011")
[1] "2011-06-04"
> dmy("04/06/2011")
[1] "2011-06-04"
ymd,mdy,dmy分别表示了三种常见的年月日排列方式,通过这种方式我们就可以把不同的日期数据都转化为标准的日期数据。
时间数据运算
此外我们还可以用对时间数据进行加减,这也是很有用的,因为有时候我们要判断两个时间之间的间隔是否超过了某个值:
> minutes(2) ## period
[1] "2M 0S"
> dminutes(2) ## duration
[1] "120s (~2 minutes)"
我们可以看到有两个函数:minutes(),dminutes(),minutes(2)函数表示的2个整分钟的概念,而dminutes()则是具体120秒的概念。这两者之间有何不同呢?可以看下面的例子:
> leap_year(2011) ## regular year
[1] FALSE
> ymd(20110101) + dyears(1)
[1] "2012-01-01"
> ymd(20110101) + years(1)
[1] "2012-01-01"
> leap_year(2012) ## leap year
[1] TRUE
> ymd(20120101) + dyears(1)
[1] "2012-12-31"
ymd(20120101) + years(1)
> [1] "2013-01-01"
leap_year()函数可以判断是否是闰年,而通过上述返回结果我们可以知道,因为dyears(1)表示的365天,所以从2012-01-01一个dyears(1),返回值是2012-12-31,而years(1)则是一个整年的概念,无论是闰年还是非闰年,加上一个years(1)都能返回下一年的相同月日的那一天,在这个例子里就反悔了2013-01-01。
时间区间
lubridate还允许我们定义一个时间区间,例如:
> arrive<-"2011-08-10 14:00:00"
> leave<-"2011-08-10 14:00:05"
> int<-interval(arrive,leave)
[1] 2011-08-10 14:00:00 UTC--2011-08-10 14:00:05 UTC
两个时间段是由--相连的,UTC表示时区,lubridate允许我们在给时间数据赋值的时候加上时区这一项,由于在日常生活中使用可能性较小,这篇文章里就不涉及了。数据分析师培训
> arrive1<-"2011-08-10 13:50:00"
> leave1<-"2011-08-10 14:00:09"
> int1<-interval(arrive1,leave1)
> int1 %within% int
[1] FALSE
> int %within% int1
[1] TRUE
有了时间区间的定义,我们还可以判断一个时间区间是否在另一个时间区间里面,用"%within%"操作符。
> as.period(int1)
[1] "10M 9S"
> int1 / dminutes(1)
[1] 10.15
如上还可以查看或计算一个时间区间的长度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23