
推动大数据发展与应用 加快建设数据强国
《行动纲要》的内容可以概括为“三位一体”,即围绕全面推动我国大数据发展和应用,加快建设数据强国这一总体目标,确定三大重点任务:一是加快政府数据开放共享,推动资源整合,提升治理能力;二是推动产业创新发展,培育新业态,助力经济转型;三是强化安全支撑,提高管理水平,促进健康发展。围绕这“三位一体”,具体明确了五个目标、七项措施、十大工程。
五个目标:一是打造精准治理、多方协作的社会治理新模式;二是建立运行平稳、安全高效的经济运行新机制;三是构建以人为本、惠及全民的民生服务新体系;四是开启大众创业、万众创新的创新驱动新格局;五是培育高端智能、新兴繁荣的产业发展新生态。
七项措施:完善组织实施机制、加快法规制度建设、健全市场发展机制、建立标准规范体系、加大财政金融支持、加快专业人才培养、促进国际交流合作。
十大工程:政府数据资源共享开放工程、国家大数据资源统筹发展工程、政府治理大数据工程、公共服务大数据工程、工业和新兴产业大数据工程、现代农业大数据工程、万众创新大数据工程、大数据关键技术及产品研发与产业化工程、大数据产业支撑能力提升工程、网络和大数据安全保障工程。
工信部重点组织三项工程
按照国务院的部署,工业和信息化部主要负责推动大数据产业发展,培育新兴业态,助力经济转型,包括推进大数据核心技术攻关、 健全产品体系、完善产业链和发展环境,推进工业及新兴产业大数据应用,同时做好信息安全和规范管理等相关工作。重点组织实施十大工程中的“大数据关键技术及产品研发与产业化工程”、“大数据产业支撑能力提升工程”、“工业和新兴产业大数据工程”三项工程。未来工信部将向各地进行更细致的任务划分,协助各地认真做好行动纲要中各项任务的分解落实工作。各地一是要结合自身产业基础和资源条件合理定位、科学谋划,突出区域特色和优势,避免重复投资和建设。二是制定出台促进大数据产业发展的政策措施,引导科技、人才、资金等各项资源向产业倾斜,加快培育骨干企业,形成产业支撑能力。三是选择基础条件好、示范效应强、影响范围广的行业和领域积极开展应用示范,充分发挥应用对产业的引导和促进作用。四是加强数据资源建设和整合,避免信息孤岛和烟囱,促进数据资源合理有序流动,积极培育产业的新业态和新模式。通过中央和各地的协同推进,共同营造良好的产业发展环境,实现我国大数据产业的科学有序发展。
大数据被寄予厚望
《行动纲要》寄予大数据重要使命。国家对新兴的技术领域和产业未来的发展做出战略布局和顶层设计,并对大数据在民生、经济、安全、科技发展、社会治理等方面的作用寄予厚望,力争实现我国从数据大国向数据强国的转变。《行动纲要》全方位多层次促进大数据产业发展。发改委、工信部等二十几个部委参与纲要编制,全方位发展大数据;中央到地方落实纲要任务,各个层面发展大数据;应用、产业、技术、数据共享等全链条发展大数据,并以产业为主体,积极布局应用引领下的产业体系。
作为国家层面促进大数据应用和发展的指导性文件,《行动纲要》涵盖大数据资源的采集、流通、分析和利用各个环节,为大数据的发展提供了顶层设计和统筹部署。文件的出台为我国大数据的未来发展指明了方向,营造了良好的发展环境。
《行动纲要》充分体现了对大数据产业的重视,将推动产业发展、培育新兴业态、助力经济转型作为三大任务之一。文件充分体现了应用牵引和企业主体的作用,通过推动大数据在各行业领域的深入应用,形成成熟的技术产品体系,构建完善大数据产业链。
《行动纲要》明确了主要任务,通过“十大工程”的方式来落实相应的任务。同时,按照《行动纲要》的统筹部署,细化分解出75项具体任务,确定了每项任务的具体责任部门和进度安排,确保行动纲要的落实和实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09