
1文本挖掘定义
文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。
2文本挖掘步骤
1)读取数据库或本地外部文本文件
2)文本分词
2.1)自定义字典
2.2)自定义停止词
2.3)分词
2.4)文字云检索哪些词切的不准确、哪些词没有意义,需要循环2.1、2.2和 2.3步骤
3)构建文档-词条矩阵并转换为数据框
4)对数据框建立统计、挖掘模型
5)结果反馈
3文本挖掘所需工具
本次文本挖掘将使用R语言实现,除此还需加载几个R包,它们是tm包、tmcn包、Rwordseg包和wordcloud包。
4实战
本文对该数据集做了整合,将各个主题下的新闻汇总到一张csv表格中,数据格式如下图所示:
具体数据可至文章后面的链接。
#加载所需R包 library(tm) library(Rwordseg) library(wordcloud) library(tmcn) #读取数据 mydata <- read.table(file = file.choose(), header = TRUE, sep = ',', stringsAsFactors = FALSE) str(mydata)
接下来需要对新闻内容进行分词,在分词之前需要导入一些自定义字典,目的是提高切词的准确性。由于文本中涉及到军事、医疗、财经、体育等方面的内容,故需要将搜狗字典插入到本次分析的字典集中。
#添加自定义字典 installDict(dictpath = 'G:\\dict\\财经金融词汇大全【官方推荐】.scel', dictname = 'Caijing', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\军事词汇大全【官方推荐】.scel', dictname = 'Junshi', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\篮球【官方推荐】.scel', dictname = 'Lanqiu', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\旅游词汇大全【官方推荐】.scel', dictname = 'Lvyou', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车词汇大全【官方推荐】.scel', dictname = 'Qiche1', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车频道专用词库.scel', dictname = 'Qiche2', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\医学词汇大全【官方推荐】.scel', dictname = 'Yixue', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\足球【官方推荐】.scel', dictname = 'Zuqiu', dicttype = 'scel') #查看已安装的词典 listDict()
如果需要卸载某些已导入字典的话,可以使用uninstallDict()函数。
分词前将中文中的英文字母统统去掉。
#剔除文本中含有的英文字母 mydata$Text <- gsub('[a-zA-Z]','',mydata$Text) #分词 segword <- segmentCN(strwords = mydata$Text) #查看第一条新闻分词结果 segword[[1]]
图中圈出来的词对后续的分析并没有什么实际意义,故需要将其剔除,即删除停止词。
#创建停止词 mystopwords <- read.table(file = file.choose(), stringsAsFactors = FALSE) head(mystopwords) class(mystopwords) #需要将数据框格式的数据转化为向量格式 mystopwords <- as.vector(mystopwords[,1]) head(mystopwords)
停止词创建好后,该如何删除76条新闻中实际意义的词呢?下面通过自定义删除停止词的函数加以实现。
#自定义删除停止词的函数 removewords <- function(target_words,stop_words){ target_words = target_words[target_words%in%stop_words==FALSE] return(target_words) } segword2 <- sapply(X = segword, FUN = removewords, mystopwords) #查看已删除后的分词结果 segword2[[1]]
相比与之前的分词结果,这里瘦身了很多,剔除了诸如“是”、“的”、“到”、“这”等无意义的次。
判别分词结果的好坏,最快捷的方法是绘制文字云,可以清晰的查看哪些词不该出现或哪些词分割的不准确。
#绘制文字图 word_freq <- getWordFreq(string = unlist(segword2)) opar <- par(no.readonly = TRUE) par(bg = 'black') #绘制出现频率最高的前50个词 wordcloud(words = word_freq$Word, freq = word_freq$Freq, max.words = 50, random.color = TRUE, colors = rainbow(n = 7)) par(opar)
很明显这里仍然存在一些无意义的词(如说、日、个、去等)和分割不准确的词语(如黄金周切割为黄金,医药切割为药等),这里限于篇幅的原因,就不进行再次添加自定义词汇和停止词。
#将已分完词的列表导入为语料库,并进一步加工处理语料库 text_corpus <- Corpus(x = VectorSource(segword2)) text_corpus
此时语料库中存放了76条新闻的分词结果。
#去除语料库中的数字 text_corpus <- tm_map(text_corpus, removeNumbers) #去除语料库中的多余空格 text_corpus <- tm_map(text_corpus, stripWhitespace) #创建文档-词条矩阵 dtm <- DocumentTermMatrix(x = text_corpus, control = list(wordLengths = c(2,Inf))) dtm
从图中可知,文档-词条矩阵包含了76行和7939列,行代表76条新闻,列代表7939个词;该矩阵实际上为稀疏矩阵,其中矩阵中非0元素有11655个,而0元素有591709,稀疏率达到98%;最后,这7939个词中,最频繁的一个词出现在了49条新闻中。
由于稀疏矩阵的稀疏率过高,这里将剔除一些出现频次极地的词语。
#去除稀疏矩阵中的词条 dtm <- removeSparseTerms(x = dtm, sparse = 0.9) dtm
这样一来,矩阵中列大幅减少,当前矩阵只包含了116列,即116个词语。
为了便于进一步的统计建模,需要将矩阵转换为数据框格式。
#将矩阵转换为数据框格式 df <- as.data.frame(inspect(dtm)) #查看数据框的前6行(部分) head(df)
聚类分析是文本挖掘的基本应用,常用的聚类算法包括层次聚类法、划分聚类法、EM聚类法和密度聚类法。
这里使用层次聚类中的McQuitty相似分析法实现新闻的聚类。
#计算距离 d <- dist(df) #层次聚类法之McQuitty相似分析法 fit1 <- hclust(d = d, method = 'mcquitty') plot(fit1) rect.hclust(tree = fit1, k = 7, border = 'red')
这里的McQuitty层次聚类法效果不理想,类与类之间分布相当不平衡,我想可能存在三种原因:
1)文章的主干关键词出现频次不够,使得文章没能反映某种主题;
2)分词过程中没有剔除对建模不利的干扰词,如中国、美国、公司、市场、记者等词语;
3)没能够准确分割某些常用词,如黄金周。
5总结
所以在实际的文本挖掘过程中,最为困难和耗费时间的就是分词部分,既要准确分词,又要剔除无意义的词语,这对文本挖掘者是一种挑战。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26