
大数据到底怎么学:数据科学概论与大数据学习误区
“数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知。”-Will Cukierski,Head of Competitions & Data Scientist at Kaggle
最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说说大数据的核心技术什么,到底要怎么学习它,以及怎么避免大数据学习的误区,以供参考。
1.大数据应用的目标是普适智能
要学好大数据,首先要明确大数据应用的目标,我曾经讲过大数据就好比万金油,像百度几年前提的框计算,这个框什么都能往里装。为什么会这样,因为大数据这个框太大,其终极目标是利用一系列信息技术实现海量数据条件下的人类深度洞察和决策智能化,最终走向普适的人机智能融合!
这不仅是传统信息化管理的扩展延伸,也是人类社会发展管理智能化的核心技术驱动力。通过大数据应用,面向过去,发现数据规律,归纳已知;面向未来,挖掘数据趋势,预测未知。从而提高人们对事物的理解和决策处置能力,最终实现社会的普适智能。不管是智慧医疗、智慧交通等相关技术和系统,其本质都是朝着这一目标在演进。随着云计算平台和大数据技术的高速发展,获得大数据基础设施建设相关技术和支持越来越容易。同时,移动互联网和物联网技术所具备的全面数据采集能力,客观上促进了大数据的积累和爆发。
总之大数据就是个大框,什么都能往里装,大数据源的采集如果用传感器的话离不开物联网、大数据源的采集用智能手机的话离不开移动互联网,大数据海量数据存储要高扩展就离不开云计算,大数据计算分析采用传统的机器学习、数据挖掘技术会比较慢,需要做并行计算和分布式计算扩展,大数据要自动特征工程离不开深度学习、大数据要互动展示离不开可视化,而面向特定领域和多模态数据的大数据分析技术更是十分广泛,金融大数据、交通大数据、医疗大数据、安全大数据、电信大数据、电商大数据、社交大数据,文本大数据、图像大数据、视频大数据…诸如此类等等范围太广,所以首先我们要搞清楚大数据应用的核心目标,这个明确之后,才利于结合不同行业特点把握住共性关键技术,从而有针对性的学习。
图1 国外大数据企业关系图,传统信息技术企业也在向智能化发展,与新兴大数据企业互为竞争和支持。
2.从大数据版图看数据科学及其关键技术体系
明确大数据应用目标之后,我们再看看数据科学(Data Science),数据科学可以理解为一个跨多学科领域的,从数据中获取知识的科学方法,技术和系统集合,其目标是从数据中提取出有价值的信息,它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,人工智能,深度学习,数据可视化,数据挖掘,数据仓库,以及高性能计算等。图灵奖得主Jim Gray把数据科学喻为科学的“第四范式”(经验、理论、计算和数据驱动),并断言因为信息技术的影响和数据的泛滥增长,未来不管什么领域的科学问题都将由数据所驱动。
图2 典型的数据科学过程:包括原始数据采集,数据预处理和清洗,数据探索式分析,数据计算建模,数据可视化和报表,数据产品和决策支持等。
传统信息化技术多是在结构化和小规模数据上进行计算处理,大数据时代呢,数据变大了,数据多源异构了,需要智能预测和分析支持了,所以核心技术离不开机器学习、数据挖掘、人工智能等,另外还需考虑海量数据的分布式存储管理和机器学习算法并行处理,所以数据的大规模增长客观上促进了DT(Data Technology)技术生态的繁荣与发展,包括大数据采集、数据预处理、分布式存储、NOSQL数据库、多模式计算(批处理、在线处理、实时流处理、内存处理)、多模态计算(图像、文本、视频、音频)、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28