
SPSS实例教程:有序多分类Logistic回归
1、问题与数据
在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究者将性别(Sex)也纳入分析(本例仅为举例说明如何进行软件操作,实际研究中需控制的混杂因素可以更多)。研究者将所有筛查人群的结果如表1,变量赋值如表2。
表1. 原始数据
表2. 变量赋值情况
2、对数据结构的分析
该设计中,因变量为四分类,且分类间有次序关系,针对因变量为分类型数据的情况应该选用Logistic回归,故应采用有序多分类的Logistic回归分析模型进行分析。
有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量首诊胃癌分期有1-4期,分析时拆分为三个二元Logistic回归,分别为(1 vs 2+3+4) 、(1+2 vs 3+4)、(1+2+3 vs 4),均是较低级与较高级对比。需注意的是,有序多分类Logistic回归的假设是,拆分后的几个二元Logistic回归的自变量系数相等,仅常数项不等。其结果也只输出一组自变量的系数。
因此,有序多分类的Logistic回归模型中,必须对自变量系数相等的假设进行检验(又称平行线检验)。如果不满足平行线假设,则考虑使用无序多分类Logistic回归或其他统计方法。
3、SPSS分析方法
(1)数据录入SPSS
首先在SPSS变量视图(Variable View)中新建四个变量:ID代表患者编号,Sex代表性别,Income代表收入水平,Stage代表首诊胃癌分期。赋值参考表1。然后在数据视图(Data View)中录入数据。
(2)选择Analyze → Regression → Ordinal Logistic
(3)选项设置
将因变量Stage放入因变量(Dependent)位置,自变量性别(Sex)、收入水平(Income)为分类变量,故放入因子(Factors)位置。若研究中还有连续型变量需要调整,则放入协变量(Covariate)位置。
点击输出(Output)选项,勾选平行线检验(Test of parallel lines)。其余选项维持默认。点击确定(OK)。
4、结果解读
(1)Case Processing Summary
给出的是数据的一般情况,这里不进行介绍。
(2)模型拟合优度检验
有两个,一个是似然比检验结果(Model Fitting Information).该检验的原假设是所有纳入自变量的系数为0,P(Sig.)<0.001,说明至少一个变量系数不为0,且具有统计学显著性。也就是模型整体有意义。
另一个结果是拟合优度检验(Goodness-of-Fit)结果,提供了Pearson卡方和偏差(Deviance)卡方两个检验结果。但是,这两个检验结果不如上图的似然比检验结果稳健,尤其是纳入的自变量存在连续型变量时,因此推荐以似然比检验结果为准。
(3)伪决定系数(Pseudo R-Square)
对于分类数据的统计分析,一般情况下伪决定系数都不会很高,对此不必在意。
(4)参数估计(Parameter Estimates)
阈值(Threshold)对应的Stage=1,2,3三个估计值(Estimate)分别是本次分析中拆分的三个二元Logistic回归的常数项。位置(Location)中Sex和Income变量对应的参数估计值为自变量的估计值。其中Income为多分类,在分析中被拆分成了三个哑变量(即Income 取值1、2、3),分别与Income=4的组进行对比。且有序多分类Logistic回归假定拆分的多个二元回归中自变量系数均相等,因此结果只给出了一组自变量系数。
Income=1系数估计值(Estimate)为-1.617意味着,在调整性别变量的情况下,Income=1(即收入水平最低)的组,相比于Income=4(收入水平最高)的组,初诊胃癌分期至少低一个等级的可能性是exp(-1.617)=0.198倍。其他系数解释相同。这说明,收入水平低的人群,其初诊胃癌时病情更严重。
Sex变量系数无统计学意义(P=0.428),如果没有其他证据证明不同性别的初诊胃癌分期有区别,那么从模型精简的角度考虑,应当将Sex变量从模型中去掉再次进行回归,得到收入水平的参数估计值。如果研究者比较肯定不同性别初诊胃癌分期会产生区别,那么即使在本研究中其系数无统计学意义也应保留在模型中(因为无统计学意义有可能是因为样本量小造成的,并不能说明该变量不产生影响)。本研究中予以保留。
(5)平行线假设检验(Test of Parallel Lines)
该检验的原假设是三个二元Logistic回归自变量系数相等,检验P(Sig.)值为0.052,不拒绝原假设,可以认为假设成立,可以使用多重有序Logistic回归。如果将参数无统计学意义的Sex变量去掉,会发现平行线假定检验P值会增大(P=0.175)(是否去掉Sex变量重回归,取决于是否有充足研究证据证明Sex是一个混杂变量,如果是,Sex变量应保留在模型中)。数据分析师培训
5、结果汇总
胃癌患者的初诊分期与患者的收入水平有关。低等收入、中等收入与中高等收入人群与高等收入人群相比,初诊胃癌分期低至少一个等级的可能性分别为0.198(P<0.001)、0.310(P<0.001)、0.640(P=0.071)倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28