
SPSS实例教程:有序多分类Logistic回归
1、问题与数据
在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究者将性别(Sex)也纳入分析(本例仅为举例说明如何进行软件操作,实际研究中需控制的混杂因素可以更多)。研究者将所有筛查人群的结果如表1,变量赋值如表2。
表1. 原始数据
表2. 变量赋值情况
2、对数据结构的分析
该设计中,因变量为四分类,且分类间有次序关系,针对因变量为分类型数据的情况应该选用Logistic回归,故应采用有序多分类的Logistic回归分析模型进行分析。
有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量首诊胃癌分期有1-4期,分析时拆分为三个二元Logistic回归,分别为(1 vs 2+3+4) 、(1+2 vs 3+4)、(1+2+3 vs 4),均是较低级与较高级对比。需注意的是,有序多分类Logistic回归的假设是,拆分后的几个二元Logistic回归的自变量系数相等,仅常数项不等。其结果也只输出一组自变量的系数。
因此,有序多分类的Logistic回归模型中,必须对自变量系数相等的假设进行检验(又称平行线检验)。如果不满足平行线假设,则考虑使用无序多分类Logistic回归或其他统计方法。
3、SPSS分析方法
(1)数据录入SPSS
首先在SPSS变量视图(Variable View)中新建四个变量:ID代表患者编号,Sex代表性别,Income代表收入水平,Stage代表首诊胃癌分期。赋值参考表1。然后在数据视图(Data View)中录入数据。
(2)选择Analyze → Regression → Ordinal Logistic
(3)选项设置
将因变量Stage放入因变量(Dependent)位置,自变量性别(Sex)、收入水平(Income)为分类变量,故放入因子(Factors)位置。若研究中还有连续型变量需要调整,则放入协变量(Covariate)位置。
点击输出(Output)选项,勾选平行线检验(Test of parallel lines)。其余选项维持默认。点击确定(OK)。
4、结果解读
(1)Case Processing Summary
给出的是数据的一般情况,这里不进行介绍。
(2)模型拟合优度检验
有两个,一个是似然比检验结果(Model Fitting Information).该检验的原假设是所有纳入自变量的系数为0,P(Sig.)<0.001,说明至少一个变量系数不为0,且具有统计学显著性。也就是模型整体有意义。
另一个结果是拟合优度检验(Goodness-of-Fit)结果,提供了Pearson卡方和偏差(Deviance)卡方两个检验结果。但是,这两个检验结果不如上图的似然比检验结果稳健,尤其是纳入的自变量存在连续型变量时,因此推荐以似然比检验结果为准。
(3)伪决定系数(Pseudo R-Square)
对于分类数据的统计分析,一般情况下伪决定系数都不会很高,对此不必在意。
(4)参数估计(Parameter Estimates)
阈值(Threshold)对应的Stage=1,2,3三个估计值(Estimate)分别是本次分析中拆分的三个二元Logistic回归的常数项。位置(Location)中Sex和Income变量对应的参数估计值为自变量的估计值。其中Income为多分类,在分析中被拆分成了三个哑变量(即Income 取值1、2、3),分别与Income=4的组进行对比。且有序多分类Logistic回归假定拆分的多个二元回归中自变量系数均相等,因此结果只给出了一组自变量系数。
Income=1系数估计值(Estimate)为-1.617意味着,在调整性别变量的情况下,Income=1(即收入水平最低)的组,相比于Income=4(收入水平最高)的组,初诊胃癌分期至少低一个等级的可能性是exp(-1.617)=0.198倍。其他系数解释相同。这说明,收入水平低的人群,其初诊胃癌时病情更严重。
Sex变量系数无统计学意义(P=0.428),如果没有其他证据证明不同性别的初诊胃癌分期有区别,那么从模型精简的角度考虑,应当将Sex变量从模型中去掉再次进行回归,得到收入水平的参数估计值。如果研究者比较肯定不同性别初诊胃癌分期会产生区别,那么即使在本研究中其系数无统计学意义也应保留在模型中(因为无统计学意义有可能是因为样本量小造成的,并不能说明该变量不产生影响)。本研究中予以保留。
(5)平行线假设检验(Test of Parallel Lines)
该检验的原假设是三个二元Logistic回归自变量系数相等,检验P(Sig.)值为0.052,不拒绝原假设,可以认为假设成立,可以使用多重有序Logistic回归。如果将参数无统计学意义的Sex变量去掉,会发现平行线假定检验P值会增大(P=0.175)(是否去掉Sex变量重回归,取决于是否有充足研究证据证明Sex是一个混杂变量,如果是,Sex变量应保留在模型中)。数据分析师培训
5、结果汇总
胃癌患者的初诊分期与患者的收入水平有关。低等收入、中等收入与中高等收入人群与高等收入人群相比,初诊胃癌分期低至少一个等级的可能性分别为0.198(P<0.001)、0.310(P<0.001)、0.640(P=0.071)倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16