
单样本t检验的spss实现
直接来看一个例子:
常规种植条件下某玉米品的平均穗重为 300g 。现在采用根外施肥(即将肥料制成液体养分,喷洒到玉米的叶面)后,调查了 20 个玉米棒 ,其穗重如表 1所示。问:改用叶面施肥后,穗重是 否显著增加了 ?(置信度为 95% 或者显著水平 α=0.05)
表1 20个玉米穗的重量(单位:g)
这是一个单尾测验,原假设和备择假设是:
原假设(无效假设):叶面施肥没有增产效果。
备择假设 :叶面施肥有增产效果
在SPSS中不能直接进行单尾测验,但是SPSS却可以输出t统计量的双侧检验相伴概率sig,将得到的相伴概率除以2,即得到单尾测验的相伴概率。将这个相伴概率与0.05进行比较,小于0.05则拒绝原假设。
单样本t检验的SPSS操作
首先将数据导入或者录入到spss中,然后依次 选择分析 <均值比较 <单样本t检验. 出现如下图所示的窗口。
将要检验的变量“穗重”选入到“检验变量”窗口,同时输入给定的用于对比的那个值,此处为常规种植条件下的穗重均值300.设置完毕后,点击确定。输出结果中的描述性统计这里就不讨论了,直接看t检验的结果。
你可以找一本统计学教材,对着t分布表,查看一下自由度为19,显著水平为0.05时,的双侧检验的t临界值,将这里得到的t值与那个临界值进行比较,如果这里的t值大于那个临界值,则拒绝原假设,这和p值小于0.05是等价的。
如下图所示,这里得到的双侧t检验相伴概率为0.006,那么单侧相伴概率为0.003,无论是双侧检验还是单侧检验,都可以拒绝原假设,考虑到叶面施肥后的穗重均值为300+7=307,因此认为叶面施肥能够极显著地增加穗重。
双侧检验与单侧检验
下面两张图片中,第一个图中黑色区域表示的是单侧检验的拒绝域。第二个图表示的双侧检验的拒绝域。同样是0.05的置信水平,双侧检验与单侧检验,临界值是不同的,因为黑色区域的位置不同,尽管它们的总面积是相等的。
进行大端单尾测验时,当计算得到的t统计量大于黑色区域与白色区域的临界位置对应的横轴值时,拒绝原假设。而这时,相伴概率也一定小于0.05,因此使用相伴概率和t临界值来决定原假设的取舍,原理本质上是一样的。只不过教材上进行案例讲解时,一般使用临界值,因为相伴概率计算困难。而统计软件一般直接给出相伴概率。(相伴概率即为p值或者spss输出的sig值。)
进行双侧检验时,计算得到的统计量落入两边任意一块黑色区域,就应该拒绝原假设。或者相伴概率小于0.05时,拒绝原假设。(黑色区域表示的是一个很小的概率,这样小的概率,通过一次试验一般是不会发生,如果发生,说明原假设有问题,说明真实的分布不是原假设成立时的这个分布,均值要改变才行,均值改变了才能符合被检验的数据,所以被检验的数据的均值与原来那个设定值是不同的。)
单侧检验的R语言实现
如果你一定要直接得出单侧检验的结果,那也不是没有办法,R语言可以直接得出单侧检验的结果。给出代码如下:
t_test01.1<-read.csv(file="D:/单样本t检验_玉米.csv",header=TRUE)
#载入数据
t.test(t_test01.1$穗重,
alternative =c("greater"),
mu =300, paired =FALSE,
conf.level =0.95
) #进行单样本t检验
输出结果如下
OneSample t-test
data: t_test01.1$穗重
t=3.1239, df=19, p-value =0.002794
alternative hypothesis: true mean is greater than 300
95 percent confidence interval:
303.1254 Inf
sample estimates:
mean of x
307
得到 p-value =0.002794<0.05,拒绝原假设,选择备择假设:alternative hypothesis: true mean is greater than 300。(实际均值大于300)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16