京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代挖掘小数据的重要性
在互联网迅猛发展的今天,大数据连接了千百万的数据点,很多人像信仰宗教一样信仰大数据。但在大数据时代,挖掘小数据也很重要,甚至更加重要。
最近有本新书,名叫《痛点:挖掘小数据满足用户需求》。这本书里说,这本书的作者是世界著名品牌营销专家马丁·林斯特龙,他曾是迪士尼、百事可乐、雀巢等著名企业的品牌顾问。马丁认为,身处大数据时代,我们要注意两个问题。
第一个问题是,大数据不会激发深刻的见解。他认为,创意通常来自把一两个不相融的物体结合起来。但是,大数据库过于狭隘,无法促成对比分析,很难带来突破性的结论。
第二个问题是,大数据重分析,轻情感,数据很难捕捉我们最看重的情感品质,比如友好、可爱。所以虽然大数据能够帮助品牌做决策,但却没办法让人们喜欢你的品牌,也就是没办法提升品牌的受欢迎度。
而且,技术的出现让我们拥有了两种人格,网络的和现实的。这两种人格几乎没有相似之处。在社交媒体上,我们并不是真实的自己。所以,当人们按照生活中的习惯行动的时候,来自网络的大数据分析通常不会很准确。
基于这两个思考,马丁·林斯特龙就提出,在大数据之外,更重要的是对真实生活场景进行观察和分析,也就是寻找小数据,只有这样才能找到用户最真实的需求。挖掘小数据,就是从手势、习惯、装饰、密码等等生活细节中,发现人们的欲望和需要。只有满足这些需要,也就是痛点,才能掌握无限的商机。换句话说,大数据与小数据的结合,才是21世纪实现营销成功的关键因素。
书中举例说,作者曾经受到委托,在沙特阿拉伯设计一个购物中心。他像往常那样在当地进行了详细的调研,发现沙特墙上的涂鸦都有一个主题,那就是水。他还发现,沙特的儿童书里面很少有和沙漠有关的内容,而是以绿洲、溪水为主。而沙特孩子五分之四的玩具是消防车、救护车和警务车,这个比例在全球来说非常高。马丁在咨询了心理学家以后,觉得这些现象都来自于沙特人对火的强烈恐惧,尤其是女性。所以在设计商场的时候,马丁和设计团队设计了几条大水渠穿过商场,还增加了鸟叫声,将商场变成了充满水形象的世界。这个设计最终取得了非常好的效果,就是因为契合了大家的心理需求。
那么,到底该如何挖掘小数据、捕捉需求呢?书里介绍了7个步骤。
第一,搜集资料。想了解某一地区人们的习惯,当地的调研必不可少。可以找几类人获得信息。一个是文化观察者,比如初到此地的新人,问他们的印象。或者当地最基层的人,比如理发师、酒保、邮递员,他们不光会告诉你事情的详情,还会告诉你他们亲朋好友的情况。我们要尽可能从更多的信源中,获得不同的观点。
第二,寻找线索。人有两个自我,一个理想的自我,一个真实的自我,而需求往往就是存在两者的差异之间。调查的时候,理想的自我可以从客厅、背包等显露在外面的地方来看,而真实的自我可以从比较隐私的地方去找,比如冰箱、衣橱等等。
第三,连接线索。问问自己:线索有什么相似的地方?这些线索偏向某个方向吗?如果最初有假设,打算开始验证吗?
第四,关联。寻找顾客行为上的转变,作者称为切入点,从中可以看到一些隐藏的信息。可以表现切入点的事件包括,结交新朋友、得到或失去伴侣、送孩子上大学,以及所有人生中的里程碑或者职业转换。
第五,因果关系。这一步要开始小数据挖掘了,找出因果关系,想想顾客的感情由什么激发?他们需要什么?要站在顾客的角度看问题。
第六,补偿。验证完因果关系,就该提取欲望了。要思考,人们还有什么欲望没被满足?满足欲望的最佳方式是什么?
第七,观念。想想已经发现的欲望,要用什么创意才能满足。作者提醒,创意不太可能在压力下产生,往往是不经意间到来,所以要给自己留有足够的空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05