京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业利好频出概念股将成为“飞猪”
大数据行业利好消息不断,相关概念股成为市场焦点。分析认为,随着互联网的发展,海量数据连通变成现实,大数据行业将迎来爆发的高潮。相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业将获得高速扩张的机遇,概念股有望成为市场上的“飞猪”。
大数据政策将密集出台
日前,工信部信息化和软件服务业司司长陈伟表示,工信部支持大数据技术和产业创新发展,提升大产业支撑能力,培育新业态新模式。工信部除制定《大数据产业“十三五”发展规划》外,还将出台促进大数据产业发展的推进计划。
据介绍,工信部将组织实施“大数据关键技术及产品研发与产业化工程”,通过相关项目和资金引导支持关键技术产品研发及产业化,同时开发面向工业、电信、金融、交通、医疗等数据密集型行业的大数据应用解决方案。
其实,大数据产业近期可谓政策利好不断。日前,国务院印发《促进大数据发展行动纲要》,提出未来5至10年我国大数据发展和应用应实现的目标,到2020年,我国将形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品;并且培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
事实上,自2014年3月“大数据”首次写入《政府工作报告》以来,政府层面一直在推进大数据产业的建设,相应的配套政策也在相继出炉。今年7月下发的《国务院关于积极推进“互联网+”行动的指导意见》中,所涉及的11项重点行动几乎全部提到对于大数据的应用,从根本上肯定了大数据在推动互联网与实体经济融合中的重要作用。
业内人士认为,大数据已经成为国家竞争力的重要体现,预计大数据行业的政策将会密集出台。不同于基础软件行业处于追逐国际主流趋势,我国大数据产业在国际竞争中已崭露头角。“相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业,将获得高速扩张的机遇。”
民生证券广州营业部首席投顾赵金伟表示,从经济发展阶段来看,如果说第一阶段是通过规模化生产来解决现实经济的“供不应求”的状况的话,中国经济即将进入第二个发展阶段亦即柔性化生产来解决当前经济“供过于求”的问题,而柔性化生产的也就是去满足客户的个性化需求,使生产更具有针对性。而柔性化生产实现的基础和前提就是要准确识别客户需求,而实现这个功能最重要的就是“数据”,只有掌握足够多的数据并进行相应的数据分析,才能生产出满足客户不同需求的产品,“数据就是财富”。
“大数据产业未来有望成为带动经济发展的主要引擎,其作用类似中国的房地产与汽车产业。”赵金伟指出,发展大数据第一离不开数据采集,数据采集必然将带动电子相关行业软硬件设备方面采购投入;数据分析必然会带动云计算、超级计算机服务器方面使用;分析的数据将指导企业生产更具有针对性满足客户需求,更有效促进和带动各个行业发展。
大数据产业将迎来黄金增长期
“数据已成为战略性资源。谁拥有更多数据,谁就拥有未来。”分析人士指出。随着中央不断加大力度推动数据开放,大数据产业商机无限,相关概念股有望成为资本上市的“飞猪”。东吴证券(601555,股吧)认为,大数据产业化高速发展,数据安全上升到新的高度。随着大数据的产业化发展,大数据从某种程度上已成为互联网经济的生产要素之一。
分析认为,在未来5到10年,大数据产业将迎来黄金增长期。根据国家金融信息中心指数研究院发布报告显示,2016年我国大数据市场规模预计将达238亿美元。贵阳大数据交易所总裁王叁寿是这次《纲要》的起草人之一。在他看来,《促进大数据发展行动纲要》的作用是要激活中国大数据的资产价值,未来我国大数据的市场规模将达到上万亿元。
“我们说大数据本身作为一种资产,它是无处不在的,但是,原来在没有《大数据发展纲要》这样一个顶层设计的时候,各级地方政府是没有把政府手里的数据资产激活的。政府手里掌握着大量的数据资产、数据资源,一旦把这个价值释放出来,我相信整个市场的规模会产生上万个亿,甚至成为继互联网以后最重要的一个产业。”王叁寿称。
银河证券分析师沈海兵指出,行动纲要政策出台是一个重要的里程碑,大数据行业迎来加速发展期,相关基础设施投资建设将迎来高潮。华创证券则认为,大数据领域政策频出,拥有数据源及分析技术的公司得到难得的发展机遇,整个大数据板块有望成为未来几年的持续成长领域。
而对于大数据行业的投资机会,赵金伟建议可从以下思路角度参与:(一)大数据产业布局带来的设备需求相关概念个股。大数据产业离不开超级服务器、超级存储设备等,这是大数据布局最先收益的行业。(二)行业内具有较好数据来源的上市公司。数据也有行业壁垒,对行业熟悉熟悉,行业数据来源广泛,尤其与政府相关部门有较长合作时间的上市公司,有望在“数字政务”、“智慧城市”建设中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09