
大数据驱动的智能化网络安全
2017年4月17日,网络安全研究国际学术论坛InForSec在南京举办了以“大数据驱动的智能化网络安全”为主题的学术论坛。本次论坛分“大数据与网络空间安全”论坛及“漏洞挖掘与智能攻防”论坛,分别由清华大学教授段海新及美国乔治亚大学教授李康主持。
来自清华大学、复旦大学、浙江大学、东南大学、中科院软件所、中科院计算所等高校和科研机构专家、学生以及百度公司、奇虎360、启明星辰等企业界的研究技术人员共170多人现场参与了会议。同时,来自国内外近百名安全研究领域的研究人员通过网络直播参与了研讨。
图:论坛主持人段海新 清华大学网络科学与网络空间研究院教授
论坛邀请了浙江大学教授陈焰、东南大学教授程光、百度商业安全部首席架构师武广柱、百度资深研发工程师姜辉、360网络安全研究院刘亚、中国科学院软件所研究员苏璞睿、中国科学院计算所研究员武成岗、美国乔治亚大学教授李康、清华大学副教授张超等做了精彩的学术报告。
图: 陈焰 美国西北大学教授、浙江大学“千人计划”教授
美国西北大学教授、浙江大学“千人计划”教授陈焰在会上做“APT Shield: A Fine-grained Detection System for Remote Access Trojan in the APT Attacks”的主题报告,他首先介绍了APT恶意软件的背景及一些基本的思路,在具体实施过程中分为两部分,第一部分是PHF检测器的生成,第二部分是分类器签名生成。他表示,这是一种新的、实时的RAT检测方法,随着第三方各种攻击的评估,该方法表现出非常高的实时精度。
图:程光 东南大学计算机科学与工程学院党委书记
东南大学计算机科学与工程学院党委书记程光教授在会上做“面向全流量的网络APT智能检测方法”的主题报告,他指出,全流量数据并非全网、全数据量,而是对所需保护对象的全流量采集和长期数据存储,APT的智能检测能从海量的网络流量中进行数据挖掘,恶意事件的关联分析和规则挖掘,根据已发现的特征或知识对未知的APT攻击进行判定,对APT攻击进行预测和泛化,对APT检测的动态性、大规模、复杂性进行自动管理和优化。同时还对APT智能检测架构和检测方法进行了具体阐述。
图:武广柱 百度商业安全部首席架构师
百度商业安全部首席架构师武广柱、百度资深研发工程师姜辉共同做题为“Using Machine Learning to Combat Financial Fraud”的报告,主要从钓鱼网站检测与挖掘,金融犯罪关联事件挖掘,同时还介绍百度利用机器学习技术构建的金融交易风险系统的算法和架构,通过分析,详细描述了他们在金融犯罪打击领域所做的工作。
图:刘亚 360网络安全研究院
360网络安全研究院刘亚在会上做“Mirai botnet的演进”的主题报告,他首先列举了Mirai相关的博客和开放数据,描述了Mirai传播方式的变化及样本的捕获,并介绍了他们基于hontel开发了一个定制的Telnet蜜罐。对于如何检测Mirai变种,如何对典型变种分析?他也进行了详细的描述,包括DGA变种、SSH scanner 变种以及一个支持多种伪HTTP agent的变种。
图:苏璞睿 中国科学院软件所研究员
中国科学院软件所研究员苏璞睿在会上做“自动攻防第一步:如何实现漏洞自动利用?”的主题报告,他指出,软件漏洞的发现与利用是对抗的焦点。确定高危漏洞,能够优化资源配置;提取漏洞利用特征,提升防御能力。典型漏洞利用过程是通过构造特定输入,触发可实现特定目标的执行路径。同时还介绍了他们在日常工作中的具体实践,包括2017年KingKong软件深度分析公益技术平台的建立。
图:武成岗 中国科学院计算所研究员
中国科学院计算所研究员武成岗在会上做“抵御内存泄露攻击的持续随机化技术——RERANZ”的主题报告,对RERANZ这项技术进行了详细阐述,包括提出的背景,RERANZ的思路,面临的挑战等等。他指出,RERANZ可以重新随机化受保护进程中的所有代码。能够避免识别和更新代码指针,基于数据累积的再随机化策略,异步重新随机化。不需要任何源代码,支持通用应用功能。
图:李康 美国乔治亚大学教授
美国乔治亚大学教授李康在会上做“Vulnerability Discovery: Practical Challenges & (Partial) Solutions”的主题报告,分析了漏洞发现过程中面临的挑战,并就部分解决方案进行了阐述。
图:张超 清华大学网络科学与网络空间学院副教授
清华大学副教授张超在会上做“New Trends in Vulnerability Discovery”的主题报告,他表示,在寻找复杂漏洞时,传统的静态/动态分析是有用的但非常有限。智能模糊和符号执行是工业和学术界使用的流行技术,机器学习和大数据可以在许多方面提高漏洞发现效率。
自由论坛
现场提问
会上,来自企业和学校的专家还对大数据驱动的智能攻防竞赛进行了热烈讨论,并发布了赛事计划。在XCTF 2017总决赛中,将新增“大数据安全能力竞赛”环节,竞赛内容主要是智能漏洞检测:包括分析/训练主办方提供的已知漏洞数据集;构建自动化分析系统,或者训练相关模型;预测或者挖掘目标程序中的安全漏洞;基于漏洞信息进行漏洞利用等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10