京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言文本挖掘之中文分词包—Rwordseg包(原理、功能、详解)
与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下:
数据导入——选择分词字典——分词
但是下载步骤比较繁琐,可参考之前的博客: R语言·文本挖掘︱Rwordseg/rJava两包的安装(安到吐血)
——————————————————————————————————
Rwordseg与jiebaR分词之间的区别
中文分词比较有名的包非`Rwordseg`和`jieba`莫属,他们采用的算法大同小异,这里不再赘述,我主要讲一讲他们的另外一个小的不同:
`Rwordseg`在分词之前会去掉文本中所有的符号,这样就会造成原本分开的句子前后相连,本来是分开的两个字也许连在一起就是一个词了,
而`jieba`分词包不会去掉任何符号,而且返回的结果里面也会有符号。
所以在小文本准确性上可能`Rwordseg`就会有“可以忽视”的误差,但是文本挖掘都是大规模的文本处理,由此造成的差异又能掀起多大的涟漪,与其分词后要整理去除各种符号,倒不如提前把符号去掉了,所以我们才选择了`Rwordseg`。
来看一下这篇论文一些中文分词工具的性能比较《开源中文分词器的比较研究_黄翼彪,2013》
8款中文分词器的综合性能排名:
Paoding(准确率、分词速度、新词识别等,最棒)
mmseg4j(切分速度、准确率较高)
IKAnalyzer
Imdict-chinese-analyzer
Ansj
盘古分词
Httpcws
jieba
——————————————————————————————————
Rwordseg分词原理以及功能详情
Rwordseg 是一个R环境下的中文分词工具,使用 rJava 调用 Java 分词工具 Ansj。
Ansj 也是一个开源的 Java 中文分词工具,基于中科院的 ictclas 中文分词算法, 采用隐马尔科夫模型(Hidden Markov Model, HMM)。作者孙健重写了一个Java版本, 并且全部开源,使得 Ansi 可用于人名识别、地名识别、组织机构名识别、多级词性标注、 关键词提取、指纹提取等领域,支持行业词典、 用户自定义词典。
1、分词原理
n-Gram+CRF+HMM的中文分词的java实现.
分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上
目前实现了.中文分词. 中文姓名识别 . 用户自定义词典,关键字提取,自动摘要,关键字标记等功能
可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目.
该算法实现分词有以下几个步骤:
1、全切分,原子切分;
2、 N最短路径的粗切分,根据隐马尔科夫模型和viterbi算法,达到最优路径的规划;
3、人名识别;
4、 系统词典补充;
5、 用户自定义词典的补充;
6、 词性标注(可选)
2、Ansj分词的准确率
这是我采用人民日报1998年1月语料库的一个测试结果,首先要说明的是这份人工标注的语料库本身就有错误。
P(准确率):0.984887218571267
R(召回率):0.9626488103178712
F(综合指标F值):0.9736410471396494
3、歧义词、未登录词的表现
歧异方面的处理方式自我感觉还可以,基于“最佳实践规则+统计”的方式,虽然还有一部分歧异无法识别,但是已经完全能满足工程应用了。
至于未登录词的识别,目前重点做了中文人名的识别,效果还算满意,识别方式用的“字体+前后监督”的方式,也算是目前我所知道的效果最好的一种识别方式了。
4、算法效率
在我的测试中,Ansj的效率已经远超ictclas的其他开源实现版本。
核心词典利用双数组规划,每秒钟能达到千万级别的粗分。在我的MacBookAir上面,分词速度大约在300w/字/秒,在酷睿i5+4G内存组装机器上,更是达到了400w+/字/秒的速度。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05