京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言文本挖掘之中文分词包—Rwordseg包(原理、功能、详解)
与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下:
数据导入——选择分词字典——分词
但是下载步骤比较繁琐,可参考之前的博客: R语言·文本挖掘︱Rwordseg/rJava两包的安装(安到吐血)
——————————————————————————————————
Rwordseg与jiebaR分词之间的区别
中文分词比较有名的包非`Rwordseg`和`jieba`莫属,他们采用的算法大同小异,这里不再赘述,我主要讲一讲他们的另外一个小的不同:
`Rwordseg`在分词之前会去掉文本中所有的符号,这样就会造成原本分开的句子前后相连,本来是分开的两个字也许连在一起就是一个词了,
而`jieba`分词包不会去掉任何符号,而且返回的结果里面也会有符号。
所以在小文本准确性上可能`Rwordseg`就会有“可以忽视”的误差,但是文本挖掘都是大规模的文本处理,由此造成的差异又能掀起多大的涟漪,与其分词后要整理去除各种符号,倒不如提前把符号去掉了,所以我们才选择了`Rwordseg`。
来看一下这篇论文一些中文分词工具的性能比较《开源中文分词器的比较研究_黄翼彪,2013》
8款中文分词器的综合性能排名:
Paoding(准确率、分词速度、新词识别等,最棒)
mmseg4j(切分速度、准确率较高)
IKAnalyzer
Imdict-chinese-analyzer
Ansj
盘古分词
Httpcws
jieba
——————————————————————————————————
Rwordseg分词原理以及功能详情
Rwordseg 是一个R环境下的中文分词工具,使用 rJava 调用 Java 分词工具 Ansj。
Ansj 也是一个开源的 Java 中文分词工具,基于中科院的 ictclas 中文分词算法, 采用隐马尔科夫模型(Hidden Markov Model, HMM)。作者孙健重写了一个Java版本, 并且全部开源,使得 Ansi 可用于人名识别、地名识别、组织机构名识别、多级词性标注、 关键词提取、指纹提取等领域,支持行业词典、 用户自定义词典。
1、分词原理
n-Gram+CRF+HMM的中文分词的java实现.
分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上
目前实现了.中文分词. 中文姓名识别 . 用户自定义词典,关键字提取,自动摘要,关键字标记等功能
可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目.
该算法实现分词有以下几个步骤:
1、全切分,原子切分;
2、 N最短路径的粗切分,根据隐马尔科夫模型和viterbi算法,达到最优路径的规划;
3、人名识别;
4、 系统词典补充;
5、 用户自定义词典的补充;
6、 词性标注(可选)
2、Ansj分词的准确率
这是我采用人民日报1998年1月语料库的一个测试结果,首先要说明的是这份人工标注的语料库本身就有错误。
P(准确率):0.984887218571267
R(召回率):0.9626488103178712
F(综合指标F值):0.9736410471396494
3、歧义词、未登录词的表现
歧异方面的处理方式自我感觉还可以,基于“最佳实践规则+统计”的方式,虽然还有一部分歧异无法识别,但是已经完全能满足工程应用了。
至于未登录词的识别,目前重点做了中文人名的识别,效果还算满意,识别方式用的“字体+前后监督”的方式,也算是目前我所知道的效果最好的一种识别方式了。
4、算法效率
在我的测试中,Ansj的效率已经远超ictclas的其他开源实现版本。
核心词典利用双数组规划,每秒钟能达到千万级别的粗分。在我的MacBookAir上面,分词速度大约在300w/字/秒,在酷睿i5+4G内存组装机器上,更是达到了400w+/字/秒的速度。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20