京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代统计改革的几点思考
随着市场经济的不断发展,大数据被越来越多地应用在现实生活中。统计调查改革也应围绕大数据展开,如何将大数据中专业化处理和深层次挖掘应用其中,在统计调查事业上发挥和实现大数据的价值,成为统计调查改革的一大命题。笔者认为,大数据时代,统计调查改革应从以下几方面着手。
构建政府大数据统计体系
大数据环境下,政府统计体系需要依照海量数据的采集、分析、挖掘和发布这几个技术层面,进行相应的机构设置。目前按专业、部门条块分割的方式所进行的机构设置模式亟待优化。应构建一个统一、协调、有序、优化的统计机构体系,打破部门、行业、科室、级别等限制,按照统计业务流程分别设立制度设计部门、数据采集部门、数据管理部门、数据发布部门、数据质量评估部门、数据分析部门、执法监察部门等职能中心。
健全大数据管理机制
大数据数据源整合的核心是衔接数据标准与分类。目前,绝大多数大数据仍以各种形式零散地存在于政府部门、电商企业、电信运营商和互联网公司等数据持有者手中。数据标准不统一,指标口径杂乱,数据之间难以整合和衔接,从而限制了大数据的应用和共享。应推进政府数据采集工作的标准化,将存在于企业、部门的大数据通过制度标准转化为结构化数据,要对视频、图片、文字等大规模非结构化数据以及半结构化数据进行标准化处理。标准化工作运行后,可以在现有各类交易终端上加装统计采集装置,并通过物联网技术,搜集、存储和实时分析节点数据流,形成整合生产、物流、交易等所有环节在内的标准化数据采集模式。
大数据时代,政府统计工作应该把更多的精力投放于统计制度和技术方法的设计、统计规范和数据标准的制定、统计安全与公众隐私的平衡、官方发布与民调组织的协调等机制研究和实践应用方面。相应的,工作重点也应该由“组织调查干统计”转变为“依法行政管统计”,不断以自身的机制创新和模式创新适应大数据时代对政府统计工作提出的新要求。
提高数据挖掘分析能力
政府统计工作的传统分析方式是根据统计制度的设计要求和对于研究对象的经验认知,对以传统方式采集上来的数据进行计算分析。然而大数据背景下的数据分析工作,政府统计部门面临的则是大量存储于云端的非结构化或半结构化数据。这种应用背景下,数据分析则变成政府统计部门一个关键性的技术环节,需要专业化的数据挖掘与分析处理技术来探寻数据之间的内在关系,寻找更多有价值的衍生信息。这就要求大数据环境下的政府统计部门,不但要具备将非标准化信息转化为结构化的标准数据的能力,而且还需要有测度出数据变量之间内(外)生影响因素的专业化数据分析水平。
面对海量数据,为了在未来的数据竞争中让统计发挥更大的社会功能,就必须在数据挖掘方面进行探索。一是要利用现代信息技术努力缩短数据采集、传输、汇总、存储、发布等主要环节的时间,使数据发布更加及时;二是增加对主要统计指标的解读和诠释,提高对统计数据的解读能力,加大对统计数据的解读力度;三是除传统媒体外,增加对互联网、微博、社交平台等新媒体的发布,更好地满足社会各界对统计数据的需求;四是在发布载体、时间、频率的选择上更加灵活,使政府统计更好地服务大众、服务社会;五是采用数据可视化技术直观地展示数据,以获得“一表胜千言”“一图胜千言”的效果。
完善统计数据发布机制
有人说,大数据的真实价值就像漂浮在海洋中的冰山,绝大部分都隐藏在表面之下。大数据时代不仅是一个充满数据的时代,更是一个全人类充分运用大数据的时代,它要求数据必须开放和流通,呈现公开、流动、共享的状态。政府统计需要做的工作是在提高数据发布的针对性、降低数据理解的复杂性和发挥数据信息的价值性方面进行模式创新。
统计最终是为用户服务的,发布对用户有价值的统计数据才是统计存在的意义所在。因此,要完善政府统计的数据发布形式,提高数据发布的针对性,发挥数据的最大信息价值。在发布数据的形式上,以文字、表格的方式发布统计数据已经跟不上用户的数据需求,也落后于商业调查的步伐。目前,文本可视化、视景仿真等新兴阅读技术已经大范围应用到计算机及其他商业领域,广义上的“智慧”概念也已经渗透到社会发展的各个方面。因此,政府统计工作应尽量缩减传统意义上的大段文字、复杂表格等难以契合公众需求和时代特点的数据发布形式,转而以新兴技术和新兴媒体为依托,加大技术投入和发布媒介创新,拓展各级各类发布渠道,充分挖掘并发挥出统计数据的实用价值。
优化数据安全保障机制
大数据背景下的统计工作,数据结构各式各样,对数据安全标准和保密性要求也不尽相同,在高度透明的网络运行中,如何进行统计数据的采集、处理以及公布都十分重要。因此,大数据时代应该更加注重数据的安全管理,实现统计信息化与数据安全建设的协调发展,提高数据安全识别、保密性的兼容和设防控制技术。一方面将网络安全技术与大数据技术相融合,确保统计平台的安全稳定运行。另一方面,统计组织体系、管理体系等方面也需要不断完善,最终共同构建一个安全保障体系,推进统计数据的存储与安全融合向更深层次发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29