京公网安备 11010802034615号
经营许可证编号:京B2-20210330
7行Python代码的人脸识别
什么是词云呢?词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。
现在,可以从网络上找到各种各样的词云,下面一图来自沈老师的微博:

从百度图片中可以看到更多制作好的词云,例如

词云制作有很多工具…..
从技术上来看,词云是一种有趣的数据可视化方法,互联网上有很多的现成的工具:
Wordle是一个用于从文本生成词云图而提供的游戏工具
Tagxedo 可以在线制作个性化词云
Tagul 是一个 Web 服务,同样可以创建华丽的词云
Tagcrowd 还可以输入web的url,直接生成某个网页的词云
……
十行代码
但是作为一个老码农,还是喜欢自己用代码生成自己的词云,复杂么?需要很长时间么? 很多文字都介绍过各种的方法,但实际上只需要10行Python代码即可。
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
text_from_file_with_apath = open('/Users/hecom/23tips.txt').read()
wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True)
wl_space_split = " ".join(wordlist_after_jieba)
my_wordcloud = WordCloud().generate(wl_space_split)
plt.imshow(my_wordcloud)
plt.axis("off")
plt.show()
如此而已,生成的一个词云是这样的:

看一下这10行代码:
1~3 行分别导入了画图的库,词云生成库和jieba的分词库;
4 行是读取本地的文件,代码中使用的文本是本公众号中的《老曹眼中研发管理二三事》。
5~6 行使用jieba进行分词,并对分词的结果以空格隔开;
7行对分词后的文本生成词云;
8~10行用pyplot展示词云图。
这是我喜欢python的一个原因吧,简洁明快。
执行环境
如果这十行代码没有运行起来,需要检查自己的执行环境了。
对于面向python 的数据分析而言,个人喜欢Anaconda,可以下载安装,安装成功后的运行界面如下:

anaconda 是python 数据爱好者的福音。
安装wordcloud 和 jieba 两个库同样非常简单:
pip install wordcloud
pip install jieba
遇到的一个小坑,刚开始运行这十行代码的时候,只显式了若干彩色的小矩形框,中文词语显式不出来,以为是万恶的UTF8问题,debug一下,发现print 结巴分词的结果是可以显示中文的,那就是wordcloud 生成词语的字体库问题了。开源的好处来了,直接进入wordcloud.py 的源码,找字体库相关的代码
FONT_PATH = os.environ.get("FONT_PATH", os.path.join(os.path.dirname(__file__), "DroidSansMono.ttf"))
wordcloud 默认使用了DroidSansMono.ttf 字体库,改一下换成一个支持中文的ttf 字库, 重新运行一下这十行代码,就可以了。
看一下源码
既然进入了源码,就会忍不住好奇心,浏览一下wordcloud 的实现过程和方式吧。
wordcloud.py总共不过600行,其间有着大量的注释,读起来很方便。其中用到了较多的库,常见的random,os,sys,re(正则)和可爱的numpy,还采用了PIL绘图,估计一些人又会遇到安装PIL的那些坑.
生产词云的原理其实并不复杂,大体分成5步:
对文本数据进行分词,也是众多NLP文本处理的第一步,对于wordcloud中的process_text()方法,主要是停词的处理
计算每个词在文本中出现的频率,生成一个哈希表。词频计算相当于各种分布式计算平台的第一案例wordcount, 和各种语言的hello world 程序具有相同的地位了,呵呵。
根据词频的数值按比例生成一个图片的布局,类IntegralOccupancyMap 是该词云的算法所在,是词云的数据可视化方式的核心。
将词按对应的词频在词云布局图上生成图片,核心方法是generate_from_frequencies,不论是generate()还是generate_from_text()都最终到generate_from_frequencies
完成词云上各词的着色,默认是随机着色
词语的各种增强功能大都可以通过wordcloud的构造函数实现,里面提供了22个参数,还可以自行扩展。
更多的小例子
看看一个准文言文的词云,本字来自本公众号去年的旧文——妻

其中在构造函数中传入了关于大小的几个参数
width=800,height=400,max_font_size=84,min_font_size=16
自惭形秽,根本看不出文言文的色彩和对妻子的感情流露,不是好文字呀!
矩形的词云太简陋了,直接在图片上用词云来填充就有意思多了,wordcloud中采用的mask方式来实现的。换上一张自己的照片,用在谈《全栈架构师》中的文字,词云出来的效果是这样的

较难看出肖像的特点了,还好,可以遮丑。其中增加了3行代码
from PIL import Image
import numpy as np
abel_mask = np.array(Image.open("/Users/hecom/chw.png"))
在构造函数的时候,将mask传递进去即可:
background_color="black", mask=abel_mask
自己做的这些词云图片还是太陋,这就是原型简单,好的产品困难呀!做好一个漂亮词云的图片,还是要在诸多细节上下功夫的。
例如:
分词的处理,“就是”这样没有意义的词不应该出现在词云里呀?
所展示关键词的目的性选择?
如何选择一个合适的字库?
如何更好地自主着色?
图片的预处理,如何让图片和词云表达原图片的主要特征?
……
词云的背后
词云的背后实际上是数据集成处理的典型过程,我们所熟知的6C,如下图:

Connect: 目标是从各种各样数据源选择数据,数据源会提供APIs,输入格式,数据采集的速率,和提供者的限制.
Correct: 聚焦于数据转移以便于进一步处理,同时保证维护数据的质量和一致性
Collect: 数据存储在哪,用什么格式,方便后面阶段的组装和消费
Compose: 集中关注如何对已采集的各种数据集的混搭, 丰富这些信息能够构建一个引入入胜的数据驱动产品。
Consume: 关注数据的使用、渲染以及如何使正确的数据在正确的时间达到正确的效果。
Control: 这是随着数据、组织、参与者的增长,需要的第六个附加步骤,它保证了数据的管控。
这十行代码构建的词云,没有通过API从公众号直接获取,简化和抽象是工程化的典型方式,这里至今复制粘贴,甚至省略了correct的过程,直接将数据存储在纯文本文件中,通过jieba分词进行处理即compose,使用词云生成可视化图片用于消费consume,把一个个自己生成的词云组织到不同的文件目录便于检索算是初步的管控control吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12