京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,一个新的相对论时代
今天的社会治理、商业管理以及个人生活,无不在快速地数据化,即事实和细节被广泛地记录下来,通过这些记录,消逝的世界可以再现,从而进行分析和预测,人类历史上一些精细的、微妙的、隐性的、曾经难以捕捉的关系和知识,现在都可以捕捉到,快速上升为显性的知识。
我的结论是,通过数据,人类从来没有如此客观地认知我们每天生活的世界。
从成都返回杭州,有几个小时我在空中飞行。回到家,一封邮件已经静静地躺在我的邮箱。里面是迫切且尖锐的提问:
“涂先生,这个时代,让我越来越困惑,我是一名资深的数据分析师,但随着数据的增多,我甚至成了一名大数据的怀疑论者……之所以没有在现场提问,是担心我的挑战给大数据的信奉者泼上冷水……”
他的问题是,数据越来越多,但他却经常感受到,他离事实越来越远,通过数据,无法发现真正的真相。
换句话说,虽然数据是真实的,但它却不一定符合真正的事实。
这是一个新的相对论,数据相对论。爱因斯坦的相对论是关于时空和引力,新的相对论是关于数据和事实。
数据永远在追赶事实
美国政府曾经竭尽脑汁,一直想掌握全国真正的人口数量。1860年代开始,美国总统就开始给美国的普通公民写信,请他们不要因为害怕人口普查而隐瞒人数,他以总统的名义保证,这些数据只是为了掌握美国的真实人口数量,而不会用于征税、征兵和法庭调查等其它用途。此后历届美国总统都致力于排除人为因素,力图保证数据的客观性。他们还想方设法缩短普查时间,最初一次普查要两年时间才能完成,到后来慢慢缩短至两个月,乃至两三天。
每时每刻,都有人出生、死亡或者濒临死亡,他们发生在不同的家庭、医院、甚至野外,现实不会静止以等待你给它画像,任何一次人为组织的人口普查,都没有办法在同一个时间点掌握全部的这些事实,从而计算出一个时间点这个世界真正的人口数目。
直到今天,信息技术、互联网、手机如此发达,这个问题还没有解决。
人类是这个世界的灵长,迄今为止仍无法准确的掌握这个星球上有多少同类,遑论其他?
世间万物,一颗红豆、一碗牛肉面、一台汽车、一段感情,其中的知识,都往往丰富得我们难以想象,所谓一花一世界、一叶一菩提。
世界之大、包罗万象、周行不殆、须臾万变,人类就像刻舟求剑的楚人一样,能掌握的永远只是某一个节点某一个范围内的小事实,有混乱和困惑是再自然不过的事了。
但在纷繁复杂、持续演变的世界,人类又在不断努力。纵使人口不断变动,美国政府亦不断改进数据获取方式,以提高效率、逼近真相。今天的美国人口普查局,已经开发了一个“人口钟”(population clock),每分钟可以预测一次美国人口的变化情况。
数据永远在追赶事实,就像永不停歇的钟摆。在追求真理的道路上,我们进入了一个更为清晰的相对论时代。
数据仅记录事实的一个侧面
十年前,我刚到美国留学。开学不久,就学到了一件重要的事情,必须区分“事实”和“观点”,至今还记得,教授在课堂上第一次引用这句名言:“每个人都可以有他自己的观点,但不可以有他自己的事实”,我从此引为圭臬。
但随着经验和阅历的增长,我又感悟到,大千世界,之所以意见纷争、共识稀少,还是因为每个人拥有他自己的事实,事实确实只有一个,但一个事实却有千万面,人因为自己的局限,往往只能看到自己认同的那一面,很少有人能面面俱到、看到一个事实的全貌。
导致的结果,各人还是各有“事实”。
这真是个很可怕的结果,数据越多,分歧也可能越多,因为每一个不同的观点,都能找到相应的数据来支持,一定程度上,比没有数据还糟糕。
在我还没到阿里巴巴工作之前,阿里就有业务线上的高管咨询我,说阿里有很多数据,也有很多部门,仅仅预测顾客下一件可能要买的东西,就有9个部门在做,这些部门,往往得出不一样的结论,而且都认为自己的预测最占理、最准确!
我的第一反应,是这些部门依据的应该是各自收集的、不同环节的数据,一问果然如此。我建议说,阿里的正确做法,应该是合并部门、归整数据,形成一个多维度的、尽可能大的数据,再进行预测。
这个案例其实隐藏着一个巨大的时代风险。数量庞大的数据,将导致“人人皆有理”。一个人要做出一个与其它人迥异的结论,总可以找到相应的数据来支撑自己。
其中的本因,就是数据再多,我们都可能无法掌握事实的全貌。数据再大都不是事实,但它逼近事实。事实确实是只有一个,但有千万个棱面,任何一组数据,可能都只仅仅描绘了“一个”面。
如果有上帝,那只有他的眼睛才能看到万事万物的全貌。人,不可以。
再大的数据,也不可以
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30