京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的大交互设计
交互设计从最初闭源非联网单机模式的单线逐层瀑布流的交互技术开发模式,在交互式信息产品的设计管理及技术实现层面,采用瀑布流的模型,指导交互设计的过程管理,随着开源和人工智能等信息通讯技术的发展,交互技术壁垒让位于对用户体验的提升,交互设计转向对用户心理认知模型的把握,交互设计模型倾向于对用户和技术的双重把握,产品向服务系统方向延伸,其设计开发模型如同人类的DNA结构,在产品性能与用户体验之间形成双向循环螺旋式的信息架构与交互模型,甚至是如新近发现的强力分化生长的四螺旋结构和量子管理的模式,代表更加敏捷交互和自然交互的创造形态;思维、信息和赛博三大空间里,交互对象跨越物质、信息和能量形成的物质流、信息流和资金流三大流程的逻辑关系管理,再结合小数据和大数据宿主,即个体用户和群体用户的情感诉求,交互设计转化为更加敏捷精益生产的互动变化模式,在大数据信息时代的生态乌托邦之下,交互设计更加具有原生态的多样性,深受蝴蝶效应和莲花原理的时空影响,敏捷生态的集群式精益发展模式成为大势所趋。在充斥着多样态的物质交互、能量交互与信息交互的生态环境中,PSS产品服务系统的谋划策略到实现使用并流通销售,再到回收利用整个循环体系的信息架构、组织分类、交互模型、交换价值、呈现表达、使用行为以及反馈交流等充满了丰富多彩又嬗变转化的样态,影响交互设计恰到好处正合适宜的生态乌托邦可持续发展的全流程系统把握。
1. 交互设计中的大数据分析研究方法
大交互设计在创意得来之前,从大数据中获取群体意愿、群体意识与群体意象数据,对用户的潜在需求数据进行挖掘、开发和数据分类整理,通过众创的模式,将来自于小数据的创意想法和设计需求进行明晰;通过众筹平台,为众创的想法筹集到资金,通过大数据分析做用户研究,明确交互角色与情境预演,定义交互内容与交互功能;通过建立大数据分析和众创平台,进行设计内容的大规模客户定制(MC);通过自媒体和网络媒体的大数据分析,针对产品和服务设计进行精准营销和传播;同时通过大数据分析,针对用户进行终身的服务设计和未来潜在用户的培育。大交互设计运用信息思维,结合牛顿思维对产品品质功能的注重,同时也运用量子思维,关注产品的服务设计的开发、创造、分配和传播,关注信息的不确定性、不可预测性、跳跃性、不连续性等特征,关注交互设计在用户层面的动因,包括前意识、潜意识和意识三个层面驱动下的信、望、爱的表达;交互技术的源点两极,输入信息,处理信息的黑箱(灰箱或白箱),以及信息输出;关注交互媒介传播的方式,在人、环境物、媒介三者之间私有、公有的联接反馈方式;交互产品服务系统在功能和内容方面的特征设计;交互行为与姿态中,相离相连相交相包的逻辑关系;交互设计在可用性目标与用户体验目标方面的评测;通用设计、万联网设计与信息设计对于交互设计的三大基础作用;以及交互设计在信息交换价值、界面交流媒介、交互功能手段的三大作用。
3.交互设计的四大作用
交互设计需把握色声香味触法六种感知途径中的交互行为模式,信息搜索中的交互行为,信息过滤和信息选择中的交互行为,信息分类排序中的交互行为,信息理解认知中的交互行为,系统重构解码中的交互行为,以及信息呈现表达中的交互行为,分门别类对应进行交互设计的细则设计,提出在交互设计的战略层、范围层、结构层、框架层以及表现层5个层面,针对PETSC(政治、经济、技术、社会、文化)多方影响下的企业文化策略、交互设计动因目标和用户多维多变的本性体验及心理潜在需求,明确产品服务系统的功能规格要求与内容过程描述,产品服务系统的交互模型、交互流程与内容信息架构,产品服务系统的交流反馈语言方面的界面设计、在赛博空间和信息空间的导航探路设计(Wayfinding)和信息设计,信息呈现表达方面的视觉设计和媒体设计等方面进行系统的交互细则条目设计。
交互设计具有四大作用,在策略层注重信息的交换价值,生物的多样性与文化的多样性是决定我们自然与社会存在的根本,信息在交换与分享中产生价值,形成信息社会的分享型经济(sharing economy)形态;在范围层依赖界面交流媒介进行信息传播,不管是“媒介即信息”(Marshall McLuhan, 1964)还是“媒介即隐喻”(NeilPostman,1985),抑或是传播媒介生态学(Media ecology)[6][7][8][9][10][11],交互的目的都是交流信息;在结构与框架层注重功能实现与反馈手段,不管是可用性目标关注的有效性、有用性、高效性、易学性、易记忆、稳定性,还是用户体验目标所强调的满意度、趣味性、成就感、反馈性、创造性、美观性、激发性、帮助性、娱乐性、欣赏性[12][13][14][15][16],交互反馈的逻辑就是实现易用的功能同时,提升用户在意识、潜意识和前意识三个层面的情感体验;交互的效能极大取决于信息在表现层的内容交通评测,功能与内容在框架范围结构层的交互感知逻辑与表现层的信息认知情感存在由内而外、软硬兼施和秀外慧中关系。
4.以意义为中心的交互设计方法
交互设计从最初的界面词素、表达方式的交流关注,到现在对情境、隐喻、情感的自然交流的注重,尽管加入了时间的维度来交互式叙事,讲述人事物的关系和事理,但在物质流、信息流和资金流三大流基于过去、现在、未来三大时间和赛博空间、信息空间、思维空间三大空间的三元三体转化关系仍然不够惟精惟一;其次在物质流方面,材料与能源的技术已经使得人机交互从物质诞生的初始状态和物质的原子层面加入了比特信息,即能够将数字信息与非数字信息集于一身,而信息流也由此回到元信息的奇点状态,信息流的量子不确定特性为交互的初始基准以及交互行为模式的捕捉带来了无穷尽的变化,信息宿主的所有权与控制权已变得不重要,而信任索取权与使用权则日渐突出;资金流方面则充满了万物互联带来的分享长尾理论与法制转为人治垄断的帕累托的角逐,各个国家主权货币和黄金加碳货币组合的世界单一货币的零和博弈。
在信息文明、工业文明、农业文明的兴衰更替之下,交互设计已不再仅仅是狭义范围的讲故事逻辑和建立角色情境,依靠隐喻、转喻、隐转喻等来建立虚拟代理和化身原型,通过关联和预测来培育用户按照设计师的设定来“体验”产品和服务,而是涵盖私有、公有、官有、国有、世界所有的各种所属交互关系的多样化情感与个体及群体的文化信仰所带来的直觉体验。小数据通过个体体验参与到设计创造与使用产品和服务中,小数据又通过万物互联的关系汇聚为大数据,在生产分享与索取控制中,形成大数据信息时代的大交互。交互基于“信息交换价值”“界面交流媒介”“功能交互手段”“内容交通评测”相互作用。大交互设计也从关注交互形式层面的技术、行为与交互的信息内容情境,转而关注人的感知、认知、情感在何种动因之下在万物互联的生态系统环境中信息衍生为群体文化与智慧文明的意义。
图 以意义为中心的设计方法
结论
《书•大禹谟》谈到做人的十六心法:“人心惟危,道心惟微,惟精惟一,允执厥中。”做设计,先做人。大交互设计思考古今中外的所有人,无论种族、国别、性别和文化差别,也思考人所在的时间与空间维度发生的故事旅程。宇宙大数据与信息构成的浩瀚烟海之下,人人运承着小数据,也如沧海一粟,地中有山。然而一沙一世界,百川东到海的始终是孕育人类生存发展的各种爱意,各种对主体与客体,I(我)、WE(我们)、IT(它)、ITS(它们)的生命的意义。在公(Public)与私(Private)连接处,是趋近无限大与无限小的奇点,以及回到初心的本真。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05