京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘过程体会
Step1.
就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟通,商业问题的理解关系到这个挖掘项目的价值,甚至成败,所以在这块大家要显得“外向”一些,多交流、多沟通、多了解这个商业问题背后的东东;

step2.
接下来就是需要提取的字段,也就是数据挖掘的宽表,这点就要和企业的DBA人员多多交流,看数据库中各个维度的表格都有什么字段,主要关联的主键有那些,那么如何选取字段呢?这就需要自己把自己与“老大”共同讨论的思维导图拿出来看看,这样就有提取那些字段的感觉了,这部分大多数的提取是自己对商业问题的感觉或者一些前辈的经验;
Step3
数据的ETL,这部分一般的时间占数据挖掘项目的70%左右,为什么数据的ETL如此重要呢?万丈高楼平地起,如果连地基都是“豆腐渣工程”的话,那么再华丽的楼房也没人愿意掏腰包;嘿嘿,开个玩笑;数据的ETL主要是一些异常值、空值(miss值)、错误数值的处理,这部分一般需要根据数据自身的分布、简单的统计知识、该字段体现的业务特点、自己的经验进行的,也就是这一部分的处理主要是统计知识+项目经验+业务特点;

Step4
建立模型所需要的变量如何选?当然目标变量(Y)一般都是事前设定好的,那么X如何找呢?大多数都是应用相关分析、特征选择、描述性的统计图表(分箱图、散点图等),这里我只想说一句算法是死的,有时候我们根据算法得出来的X对Y没有影响,但在实际的业务中影响却很大,所以大家不要过于依赖算法、工具,我曾经因为这点,被人批了,555~~~~~

建立数据挖掘模型,这块是许多同行相当痴迷的地方,我也不例外,记得大学毕业去北京的时候,就在咨询公司研究算法什么的,后来经过leader的几次谈话,自己才慢慢走出了误区;一句话,我们追求的是模型带来的效益,所以没那么多时间去玩模型、搞算法;但是作为数据挖掘从业者,最基本的应该是了解各种算法的原理,还有一些数据挖掘模型参数的意义,比如在spss clementine中就有自定义和专家两个供大家选择,所以掌握一些参数的意义也是有必要的,大家可以上网下一些人大数据挖掘的视频教程,里面讲的比较详细;

Step6
模型评估,大部分都是借助数据挖掘自带的评估模型来做,什么准确度、收益率等,理论上很完美,实际中就一定有疗效吗?非也!有时候模型跑出来的信息很诡异的,建模人员都无法知道这个结果如何去解读,这时我倒是觉得可以从模型中选取一部分人群来做一下简单的调研,或许能获得更多数据背后的东西,也能为自己的片子多几分数据解读的色彩,何乐而不为呢?

Step7
模型可视化展示,可视化一直是一些数据服务公司所追求的东东,也是我们从业人员一种传达信息的方式,对于一个专题的数据挖掘模型,我相信大家都能通过一些图表、表格或者更炫的PPT搞定,打个岔,我常常遇到这样的问题,在对多维度做交叉分析时,因为涉及许多数据维度的钻取而很难展现给决策者,这时可以用水晶易表来做动态的展示,但是遇到更复杂的逻辑呢?大家不难发现现在大部分的数据分析系统或者叫运营体系的分析维度都是作为一个content展现给使用者,从数据从业者的角度来看,这只是从不同维度对数据进行了切割而已,谈不上真正的数据可视化,路漫漫兮修远兮!业务、维度、用户交互三者融合才是王道;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29