
数据挖掘过程体会
Step1.
就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟通,商业问题的理解关系到这个挖掘项目的价值,甚至成败,所以在这块大家要显得“外向”一些,多交流、多沟通、多了解这个商业问题背后的东东;
step2.
接下来就是需要提取的字段,也就是数据挖掘的宽表,这点就要和企业的DBA人员多多交流,看数据库中各个维度的表格都有什么字段,主要关联的主键有那些,那么如何选取字段呢?这就需要自己把自己与“老大”共同讨论的思维导图拿出来看看,这样就有提取那些字段的感觉了,这部分大多数的提取是自己对商业问题的感觉或者一些前辈的经验;
Step3
数据的ETL,这部分一般的时间占数据挖掘项目的70%左右,为什么数据的ETL如此重要呢?万丈高楼平地起,如果连地基都是“豆腐渣工程”的话,那么再华丽的楼房也没人愿意掏腰包;嘿嘿,开个玩笑;数据的ETL主要是一些异常值、空值(miss值)、错误数值的处理,这部分一般需要根据数据自身的分布、简单的统计知识、该字段体现的业务特点、自己的经验进行的,也就是这一部分的处理主要是统计知识+项目经验+业务特点;
Step4
建立模型所需要的变量如何选?当然目标变量(Y)一般都是事前设定好的,那么X如何找呢?大多数都是应用相关分析、特征选择、描述性的统计图表(分箱图、散点图等),这里我只想说一句算法是死的,有时候我们根据算法得出来的X对Y没有影响,但在实际的业务中影响却很大,所以大家不要过于依赖算法、工具,我曾经因为这点,被人批了,555~~~~~
建立数据挖掘模型,这块是许多同行相当痴迷的地方,我也不例外,记得大学毕业去北京的时候,就在咨询公司研究算法什么的,后来经过leader的几次谈话,自己才慢慢走出了误区;一句话,我们追求的是模型带来的效益,所以没那么多时间去玩模型、搞算法;但是作为数据挖掘从业者,最基本的应该是了解各种算法的原理,还有一些数据挖掘模型参数的意义,比如在spss clementine中就有自定义和专家两个供大家选择,所以掌握一些参数的意义也是有必要的,大家可以上网下一些人大数据挖掘的视频教程,里面讲的比较详细;
Step6
模型评估,大部分都是借助数据挖掘自带的评估模型来做,什么准确度、收益率等,理论上很完美,实际中就一定有疗效吗?非也!有时候模型跑出来的信息很诡异的,建模人员都无法知道这个结果如何去解读,这时我倒是觉得可以从模型中选取一部分人群来做一下简单的调研,或许能获得更多数据背后的东西,也能为自己的片子多几分数据解读的色彩,何乐而不为呢?
Step7
模型可视化展示,可视化一直是一些数据服务公司所追求的东东,也是我们从业人员一种传达信息的方式,对于一个专题的数据挖掘模型,我相信大家都能通过一些图表、表格或者更炫的PPT搞定,打个岔,我常常遇到这样的问题,在对多维度做交叉分析时,因为涉及许多数据维度的钻取而很难展现给决策者,这时可以用水晶易表来做动态的展示,但是遇到更复杂的逻辑呢?大家不难发现现在大部分的数据分析系统或者叫运营体系的分析维度都是作为一个content展现给使用者,从数据从业者的角度来看,这只是从不同维度对数据进行了切割而已,谈不上真正的数据可视化,路漫漫兮修远兮!业务、维度、用户交互三者融合才是王道;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04