京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据云计算赋能 互联网+向工业下沉是必然结果
自“互联网+”从概念到成为国家顶层战略,已过去两年多的时间。如今,”互联网+“的发展已经取得很大进步,在政务、警务、医疗等领域已初见成效,对传统产业的赋能效应也逐渐凸显,推动传统领域的转型升级。而“互联网+”在工业领域的下沉和渗透则是“新风口”,大数据、云计算等能力的开放,将提速工业化进程。
互联网+重塑“智造
“互联网+”是通用技术,向工业下沉是必然结果
“现在讲互联网+,对研究经济的人来说,实际上是通用技术怎么向各行业渗透。前一个很大的通用技术是电力技术,电力技术刚起来的时候,也是很小的一个领域,慢慢地渗透到所有行业。既然是通用,就代表你的技术能带来便利性或提高效率。”对于互联网+的连接能力,国务院发展研究中心企业研究所副所长张文魁这样理解。
同时,他还认为:无论德国工业4.0,还是中国制造2025,也许未来10年、20年、30年,互联网+工业的实际结果,跟现在描绘的并不一样。“但这并不要紧,互联网+作为通用技术,肯定会渗透进去。”
对于张文魁的观点,腾讯移动互联网事业群副总裁、互联网+合作事业部总经理陈广域也表示认同。他提到“互联网+”是互联网思维的进一步实践,在渗透各行各业的同时,也正在推动经济形态不断地发生改变。而对于腾讯而言,作为互联网+的提出者,腾讯“互联网+”思路核心是开放、赋能。“腾讯的定位是连接器,也就是说,不是腾讯自身有能力做所有跟产业互联网+、能源互联网+ 、制造互联网+有关的事,而是腾讯释放和输出核心能力,给所有互联网+生态合作伙伴提供平台和基础,帮助合作伙伴在实现互联网+这件事上变得更简单。”
无论这种“通用技术”渗透到什么行业,最终都会落实到产品和技术上。张文魁指出:互联网+的连接能力已初见成效,虽然在工业领域渗透还比较缓慢,但融合是早晚的事情。当互联网+开放生态与工业领域真正完美的融合时,就可能诞生伟大的产品。
腾讯“互联网+“赋能工业,基础能力是大数据和云计算
对于云计算能力腾讯云副总裁黄海清指出:“云其实是一个基础架构,是一个最底层的,一个平台上面有各个方面的分支应用。”
同时,谈到云计算在工业领域的运用时,黄海清还介绍,在离散制造,包括像汽车制造、工业制造等领域,云计算的应用空间巨大。“我们和三一重工有一个工业云项目,在工业设备上放了很多传感器,传感器收集到很多机器数据,没有云计算的支持是没有办法分析的。把传感器的数据获取、重组在云上,然后进行分析,变成数据库,变成可以利用的大数据价值。这就是大数据和云计算带给工业改革的力量。” 所以“互联网+”赋能,无论在汽车制造、工业制造、重工、轻工、机械等传统企业都需要大数据和云计算的基础能力。
陈广域强调:“大数据和云计算能力能保证数据的传输是更高效的,未来三一重工的每个挖掘机都能连接在一起,那这样我们就知道,全国有多少机器开工、进一步反映今年经济是不是景气、建筑行业是不是遇到问题。过去缺少这些数据还做不到这样的效果,但今天我们有这样的能力,我们可以帮助各行各业做这样的事情。”其实,这正是“互联网+”赋能工业的体现。
腾讯在互联网+的基础能力上,拥有大数据和云计算以及微信小程序的能力,同时,腾讯还拥有社交、游戏、支付、生活等移动端的产品,拥有庞大的用户基数,所以腾讯可以把大数据、云计算等基础能力开放出来,帮助国家政府,传统行业包括制造业在内等各个领域快速使用互联网+的能力,实现快速发展。小程序也可以帮助企业主、商家、个体更好的去触达用户,经营自己的品牌,提升效率。
“互联网+”工业领域发展 想象空间巨大
事实上,无论从德国“工业4.0”提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂,还是“中国制造2025”规划的发布以及一系列相关配套措施的落实来看,都将是推动传统工业转型升级,实现互联网+工业的快速发展。
工业生产的网络化和智能化特征越来越明显,“互联网+”与工业融合发展已经成为不可逆的趋势。虽然说腾讯“互联网+“赋能工业的基础能力是大数据和云计算,但是具体会以什么样的形式融合却给我们留下更大想象空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01