京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析在玻璃企业中的重要性
小白:大湿你上次说到数据分析有重要的作用,我想了解一下。
大湿:好啊,今天我们一起探讨一下。先了解一下目前数据分析在全球范围内大部分行业的应用和效果吧。目前先进的行业和优秀的企业大多数于都在使用数据分析,目的是加快产品研发、迭代,高效解决生产效率和质量问题,进而赚取更多的利润。比如美国的英特尔、惠普、戴尔、通用电器,中国的华为、阿里巴巴、腾讯等大公司都在使用。2016年参加美国JMP中国分公司在深圳举办的数据分析大会,宝洁公司高级工程师参加大会演讲,题目为女性卫生巾包装的数据建模,介绍如何使用JMP数据分析软件建模分析来探知、预测消费者对包装样式、颜色等喜好,进一步增加销售,占领更多的市场。宝洁的厉害之处在我看来,就是在大家认为没有价值或意义的地方探索发现有价值和意义的东西,争取到更多的用户、销售更多的产品。
小白:那咋们玻璃行业有运用数据分析的企业吗?
大湿:当然有,不过国外的企业多一下,比如已经知道的美国O-I玻璃、法国圣戈班玻璃、日本旭肖子玻璃,中国的福耀玻璃集团,中国南玻集团等。
小白:我们公司也有统计文员啊,也在做数据分析报表呢!比如把每天生产现场纸质记录的数据录入到excel 已有格式的表格里,还能把前五位主要的缺陷筛选出来做出好看的图表。这不就是数据分析吗?
大湿:当然也是数据分析的一部分,只是沧海一粟。数据分析不光是呈现或突出归纳已有的数据,还能在看似杂乱无章的数据背后发现玻璃生产过程中潜藏的规律,进而引导我们往更好的方向改进,能科学地验证我们的猜想和已有经验的条件和边界,使我们有限的经验转化为可靠的工艺技术,通过有效的工艺调试(试验设计DOE)在最小的调整次数和最短的时间能找到最佳、最可靠的工艺参数。
小白:好像有点高大上啊,我还是最想了解我们玻璃工厂在哪些方面能用到哪些你说的数据分析方法解决实际问题?这个是我最关心的问题。
大湿:这个问题好,戳中我们谈论的焦点。其实玻璃企业本质上和其他传统行业或高科技行业没有多大的区别,都是提供产品和服务满足客户需求,同时创造价值各取所需,只是运用的知识和实现的路径不同而已。玻璃厂在以下几个方面如果用数据分析进行决策、改进会取得不同的效果。第一、比较差异。在采购中,判定购买的不同厂家原材料、包装材料等物资哪家更好或不同批次之间是否有明显的差异,或哪家的性价比最高等等需要用到数据分析;在配料中,分析原料称重在批次间是否存在显著的波动,对玻璃的组成或结构是否造成一定影响(精确称量要求高时需要用的控制图SPC);第二、参数优化。在玻璃料方设计中,需要找到最佳的产品生产工艺对应的料方组成,同时还要满足经济、环保的要求,这就需要借助数据分析中的混料设计方法来达到料方设计目的;在窑炉控制、行列机制瓶中,需要探索最佳工艺参数制造出缺陷最少、能耗最低、数量最多的产品,这也需要用到探索性数据分析工具或者试验设计(DOE)的方法。第三、产品检验。我们生产的产品或是抽检或是全检,但都只能保证每班批次的每支产品尽量都是合格,无法做到大量产品100%合格。所以检验人员如何随机抽取测试的样品、最少应该测试多少数量的样品来评估生产的产品质量等等情况,也需要用到数据分析。
小白:我以前以为只要认真细致的观察、加以直觉感知到的经验提炼就能摸索出一套行之有效的方法,解决技术上的问题。没有想到应用数据分析是在最底层的原理、方法上进行严格的推演、证明、运算,显得更加科学有效。如果能例举一些数据分析在玻璃生产实际运用的实例,那就更加贴切、具体了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06