京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析在玻璃企业中的重要性
小白:大湿你上次说到数据分析有重要的作用,我想了解一下。
大湿:好啊,今天我们一起探讨一下。先了解一下目前数据分析在全球范围内大部分行业的应用和效果吧。目前先进的行业和优秀的企业大多数于都在使用数据分析,目的是加快产品研发、迭代,高效解决生产效率和质量问题,进而赚取更多的利润。比如美国的英特尔、惠普、戴尔、通用电器,中国的华为、阿里巴巴、腾讯等大公司都在使用。2016年参加美国JMP中国分公司在深圳举办的数据分析大会,宝洁公司高级工程师参加大会演讲,题目为女性卫生巾包装的数据建模,介绍如何使用JMP数据分析软件建模分析来探知、预测消费者对包装样式、颜色等喜好,进一步增加销售,占领更多的市场。宝洁的厉害之处在我看来,就是在大家认为没有价值或意义的地方探索发现有价值和意义的东西,争取到更多的用户、销售更多的产品。
小白:那咋们玻璃行业有运用数据分析的企业吗?
大湿:当然有,不过国外的企业多一下,比如已经知道的美国O-I玻璃、法国圣戈班玻璃、日本旭肖子玻璃,中国的福耀玻璃集团,中国南玻集团等。
小白:我们公司也有统计文员啊,也在做数据分析报表呢!比如把每天生产现场纸质记录的数据录入到excel 已有格式的表格里,还能把前五位主要的缺陷筛选出来做出好看的图表。这不就是数据分析吗?
大湿:当然也是数据分析的一部分,只是沧海一粟。数据分析不光是呈现或突出归纳已有的数据,还能在看似杂乱无章的数据背后发现玻璃生产过程中潜藏的规律,进而引导我们往更好的方向改进,能科学地验证我们的猜想和已有经验的条件和边界,使我们有限的经验转化为可靠的工艺技术,通过有效的工艺调试(试验设计DOE)在最小的调整次数和最短的时间能找到最佳、最可靠的工艺参数。
小白:好像有点高大上啊,我还是最想了解我们玻璃工厂在哪些方面能用到哪些你说的数据分析方法解决实际问题?这个是我最关心的问题。
大湿:这个问题好,戳中我们谈论的焦点。其实玻璃企业本质上和其他传统行业或高科技行业没有多大的区别,都是提供产品和服务满足客户需求,同时创造价值各取所需,只是运用的知识和实现的路径不同而已。玻璃厂在以下几个方面如果用数据分析进行决策、改进会取得不同的效果。第一、比较差异。在采购中,判定购买的不同厂家原材料、包装材料等物资哪家更好或不同批次之间是否有明显的差异,或哪家的性价比最高等等需要用到数据分析;在配料中,分析原料称重在批次间是否存在显著的波动,对玻璃的组成或结构是否造成一定影响(精确称量要求高时需要用的控制图SPC);第二、参数优化。在玻璃料方设计中,需要找到最佳的产品生产工艺对应的料方组成,同时还要满足经济、环保的要求,这就需要借助数据分析中的混料设计方法来达到料方设计目的;在窑炉控制、行列机制瓶中,需要探索最佳工艺参数制造出缺陷最少、能耗最低、数量最多的产品,这也需要用到探索性数据分析工具或者试验设计(DOE)的方法。第三、产品检验。我们生产的产品或是抽检或是全检,但都只能保证每班批次的每支产品尽量都是合格,无法做到大量产品100%合格。所以检验人员如何随机抽取测试的样品、最少应该测试多少数量的样品来评估生产的产品质量等等情况,也需要用到数据分析。
小白:我以前以为只要认真细致的观察、加以直觉感知到的经验提炼就能摸索出一套行之有效的方法,解决技术上的问题。没有想到应用数据分析是在最底层的原理、方法上进行严格的推演、证明、运算,显得更加科学有效。如果能例举一些数据分析在玻璃生产实际运用的实例,那就更加贴切、具体了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10