
如何构建下一代大数据架构
技术和软件的进步使我们能够处理和分析大量数据。虽然很明显,大数据是一个企业投入了大量资金的热门话题,但要注意,除了考虑数据规模,我们还需要考虑到被分析数据类型的多样性。数据种类不同意味着数据集可以存储在许多格式和存储系统中,每个类型都有自己的特征。
考虑数据多样性是一项艰巨的任务,但有一种方法可以使你360度全面了解你的客户,提供商和运营商。为了实现这种方法,我们需要实现下一代大数据架构。接下来,我们来看一下如何构建下一代大数据架构。
如今,较具前瞻性的企业都越来越依赖数据湖。数据湖是管理事务数据库,同时,数据湖也可以看做是一个大数据分析平台。数据湖支持不同来源的数据,如文件,点击流,IoT传感器数据,社交网络数据和SaaS应用程序数据。
数据湖的核心原则是存储原始的,未经改变的数据。这让数据分析和探索更具有灵活性,并且还允许查询和算法基于历史和当前数据,而不是基于单个时间点的快照来演变。数据湖可将数据集中到一个公共存储库中,以此避免信息孤岛。该存储库很可能分布在许多物理机上,但最终将为用户提供透明访问和基础分布式存储的统一视图。此外,数据不仅是分布式的而且是复制的,因此可以确保数据的易访问和可用性。
数据湖存储所有类型的数据,包括结构化和非结构化数据,并通过整个企业的统一视图提供民主化访问。通过这种方法,用户可以在单个平台支持许多不同的数据源和数据类型。 数据库加强了企业现有的IT基础架构,与传统应用程序集成,增强(甚至替换)企业数据仓库(EDW)环境,并可利用日益增长的数据种类和数据量为新应用程序提供支持。
能够存储不同类型的数据是数据湖的一个重要特征,这保证了用户不会丢弃任何有价值的元数据或原属性,不同的数据分析技术也可用于数据的各阶段,避免了仅在其被聚合或变换之后才处理数据而产生的限制。创建可以使用不同算法查询的统一存储库,包括传统EDW环境范围之外的SQL备选方案,是数据湖的标志和大数据战略的基本部分。
为了实现数据湖的最大价值,必须保证数据的质量和可靠性——即确保数据湖可以恰当地反映公司业务。可以轻松访问,让用户能够更快识别他们想要使用的数据。为了管理数据湖,关键是具有清理,保护和操作数据的流程。
构建数据湖不是一个简单的过程,必须决定采集哪些数据,以及如何组织和编目数据。 虽然它不是一个自动化的过程,但有相应的工具和产品来简化企业级现代数据湖架构的创建和管理。这些工具允许提取不同类型的数据包括流,结构化和非结构化,所有这些都为敏捷数据湖平台的创建打下了基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11