
一个优秀数据分析师的准则
有很多的大学生或求职者都在问,现在好的数据分析师都在哪些行业、什么岗位,还有哪些专业是适合数据分析师专业的?
从不完全统计,现在数据分析师主要分布在互联网公司(包括电商、O2O、游戏、互联网金融行业)占70%,传统零售行业(多品类+大数据快消)占8%,咨询公司(数据挖掘类+市场研究类)占14%,金融行业(包括银行、证券)+电信+其它占8%;
从地域分布来看北京(40%)、上海(20%)、广深(20%)、杭州(10%);从教育背景来看包括数学、统计学、心理学、社会学、人口学、营销学;数据分析师人员流动情况,
1、咨询公司-->甲方(传统 or互联网公司),逆向几乎没有;
2、传统行业-->互联网公司-->互联网公司--->传统行业--->更大平台+核心业务+大数据量---->去中小平台做数据负责人;
3、毕业--->大型平台做技术--->二、三线公司做数据管理---->有一部回流到大型平台,更多是二三线公司更高的管理岗位;
4、毕业--->二、三线公司做技术专家方向---->二、三线公司分析骨干、管理岗--->大型公司专家岗+更小职级管理岗;
现在数据分析师的市场需要量是很大的,包括二三线互联网公司成为主流,大型平台型公司数据分析师更是成为与财务重要性等同的团队。
但是这个职业刚刚兴起,很多HR与企业都在一种摸索的状态,大家都知道现在互联网公司到C轮以上都需要分析团队来对于线上的数据需要进行整合、分析进一步希望能满足对于市场活动决策能力。
更大的范围现在都需要数据分析师对于经营决策提供依据及对于专题市场营销希望能更进一步提供全过程数据化运营与管理能力,但是数据分析工作性质及也是刚新起的工种,市场上还是对于人才缺乏判别能力,现在我说说好的数据分析师是怎么样?
格局是决定一个数据分析师的能力标准,一个好的数据分析师应该从行业的层面来分析公司现在所处的位置以及整个行业的分析,而且通过内外的数据得出富有逻辑性的结论,然后从这些结论中提供公司战略层面思考的策略,当然我也明白现在我们很多的分析师朋友都在沉浸在业务或者项目分析中,但是我认为格局观是决定一个数据分析师的能力标准。
那么怎么能用一句来总结数据分析师是什么呢?
基于内部与外部的数据结合通过严密的完整商业思考及严密逻辑推理,得出针对业务好坏的结论,并得出业务改进的策略。
什么内部与外部的数据的结合,我们即要看内部的数据还要结合行业的数据,而商业思考是做数据分析师通用的技能,那么结论是基本产出物,策略是分析师高级产出物。
数据分析师需要三类素质,第一类是基本素质,第二类是通用技能,第三类是专业技能。
基本素质包括:1、聪明与好奇心;2、愿意学习并愿意能沉下心来付出;3、耐心与专注。
通用技能是核心思考能与展现自己的能力,第一点,结构化的思考能力与逻辑推理能力即智商不能差,如果是这样你看到的越多就做的越好,怎么来判断呢?第二点,良好商业感觉与商业判断能力;第三点,要有宏观思考能力,你要看到的格局要到;第四点,要有良好沟通能力。
专业能力从专业上要有基本统计学知识,从能力上要包括扎实数据分析能力与数据处理能力包括SAS\R\SPSS及tableau、FineBI等可视化表达的能力。那么高级数据分析师,我们应该更看中基本素质与通用能力,如果专业操作类分析师那么我们需要基本素质与专业技能。
一个专业的数据分析师,发展到之后会知道往什么方向分析,能敏锐的观察出某个数据问题背后的原因,当然这是经验之谈。更多的时候我们需要借助SPSS、R等工具做挖掘分析,通过FineBI做实际应用过程中的业务分析。工具是次要的也是重要的,最终需要将挖掘到的信息规律转化到业务指导上来,制定正确的决策,才是硬功夫。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04