京公网安备 11010802034615号
经营许可证编号:京B2-20210330
安防大数据下智慧交通需求全面分析
随着我国城镇化和公路网络的快速发展,地区车辆的汇集使得车辆在繁忙路段和特殊时期变得拥堵不堪,交通出行成为日渐突出的问题。
随着我国城镇化和公路网络的快速发展,地区车辆的汇集使得车辆在繁忙路段和特殊时期变得拥堵不堪,交通出行成为日渐突出的问题。虽然各地都针对目前遇到的难题开始着手建设智能交通综合管控平台,但由于缺乏高效的平台系统,很多地方在海量数据的采集、处理和分析应用方面,在结合视频监控、交通信号控制系统、诱导系统、交通流量检测系统等方面的综合应用还有待提高。
传统系统架构的瓶颈
通过各路前端设备24小时不间断的抓取,属于安防性质的海量数据出现了激增。以保定市为例,每天由卡口、电子警察等车牌识别设备所产生的数据量约1200万余条,一年达到45亿条的数据规模。除此之外,还有车辆抓拍的图片数据、违法记录、事故处理等产生的业务数据和实时流量信息,以及路网管理与交通事件信息等多种类型的数据。这些海量数据的产生,使得很多传统的系统架构面临着一个海量数据采集、存储、计算、应用的难题,并且通过越来越多的突发交通时间可以分析发现,视频监控的作用仍然停留在被动服务于“事后研判”的模式,整个监控和控制系统并未做到主动干预,更无从谈起防患于未然。
与此同时,在面对海量数据时,也暴露了传统的系统架构在海量结构化数据处理上的瓶颈,如系统存储无法弹性扩容;查询速度缓慢,无法快速响应突发事件;应急指挥系统操作复杂;各种类型数据资源分散,无法做到整合并进行综合分析……这些都预示着当前的交通部门需要一个可以应付智慧交通业务需求的全新系统架构。
全新智慧交通系统架构的需求
构建全新的智慧交通系统架构,需要从大数据思想出发,可以从三个维度分别解析智慧交通与大数据的关系构建。从系统架构来讲,分为数据采集、时空数据库、大数据分析引擎和行业应用四个层次,分别对应了智慧交通业务中的原始视频库,基础信息库与警情/案事件库,而从数据发展的维度,则对应了数据向知识递进的知识管理理论基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31