京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Cox回归分析及其SPSS操作方法概述
我们先回顾一下生存分析的KM法和寿命表法(回复数字26和27可以查看KM法的详细内容),其共同点是只能分析一种因素与生存率的关系,Log-Rank法也是比较一个因素两种水平间的生存差别,如果生存率的影响因素有很多,我们怎么避免其它混杂因素的影响呢?我们可以使用回归分析方法,但如果使用logistic回归,也是只能观察影响因素与结局的关联,没有考虑结局发生的时间因素。Cox回归可以解决这个问题。Cox回归一般模型假设为
其中h(t,X)是在时刻t的风险函数又可称瞬时死亡率,h(0,t)是基线风险率,其它与logistic回归模型相同。βj大于0则xj越大,病人死亡风险越大,βj小于0则xj越大,病人死亡风险越小,βj等于0则xj越与死亡率没有影响。Exp(β)为危险比(HR)或相对危险度(RR)。
下面以一个例子说明在SPSS中作Cox回归如何操作。
我们想观察乳腺癌的生存率及其影响因素,收集了1207例病例并进行了随访。观察的因素包括年龄(age)、病理肿瘤大小(pathsize)、腋窝淋巴结个数(lnpos)、组织学分级(histgrad)、雌激素状态(er)、孕激素状态(pr)和淋巴结转移(ln_yesno)等。time为随访时间,status为生存状态。
在SPSS菜单里点击“分析”-“生存函数”-“Cox回归”,在弹出的对话框里,将”time”和” status”分别选入时间和状态对话框,点击“定义事件”,填写“1”,将不同的影响因素选入协变量框中,方法可以选“向后:LR”(各种方法差别不大,可以自由选择)。
如果有多分类变量需要设置哑变量,可以点击右上角“分类”,将要设置哑变量的变量选入右边框中。并可以选择以第一个或者最后一个作为参照。
在右上角点击“选项”,可以选择“CI用于exp(B)”,用于计算HR的95%置信区间。
最后点击确定可看到Cox回归分析结果。
结果中第一个表给出病例纳入情况,如下图,数据共1207个病例,但最后一共纳入590例,其中40例出现事件(即死亡),另外617例因为有缺失值被排除。从中可以看出,数据质量不太好,有缺失值的病例占一半以上且有观察终点的病例只有40例。
下面的表中是哑变量编码情况,histgrad中“1”被编码为“0”“0”,即histgrad中“2”“3”均以“1”为参照。
下面再看主要的结果,即“方程中的变量”表。本表列出了多个步骤,在步骤1中,全部我们纳入的变量都进入分析,从前往后分别是模型系数(B)、系数标准误(SE)、Wald检验值,自由度(df)、p值,HR值(Exp(B))及其置信区间。接下来看步骤2,其相对于步骤1少了一个变量er。即步骤2中删除了步骤1中的P值最大的变量。同理依次删除p值最最大的变量。
下面我们看最后一步,即步骤5.经过筛选,只剩下三个变量,即认为这三个变量对生存率的影响,其中病理肿瘤大小对应的HR为1.566,大于1,即认为病理肿瘤越大,生存时间越短;同理腋窝淋巴结个数越多,生存时间越短;孕激素状态对应的HR为0.511,小于1,即有孕激素时生存时间越长。
需要说明的是Cox回归分析是比例风险模型,即模型假设在任一时间点两组的危险比是相同的。如下图所示:
而下图所示则不符合比例风险模型,不能作简单Cox回归。如果想作回归分析,可以咨询相关统计专家或查看专业书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06