
数据分析的一些常见问题
数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。
数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:
1、 不知道要分析什么?(分析目的)
不知道要分析什么,也就是分析目的不明确。
经常有学员告诉我,领导给了一大堆数据给我,要我分析一下,但我不知道要分析什么?除了基本的统计求和,我不知道要干吗。
明确分析目的,这是数据分析的起点,也是分析的终点。所有的分析工作都应该围绕业务问题开始,分析的结果最终也要落到业务问题。
如果目的不明确,后续的分析工作就无法开展了。
2、 下一步做什么?(分析过程)
数据分析不是一个单一的操作,而是一套复杂和完整的操作流程。
一般地,一个完整的数据分析包括了六个步骤,后一个步骤依赖前一个步骤,也是前一个过程的深入。
当有了分析目的之外,接下来就需要围绕业务问题来收集相关的数据,并对收集来的数据进行预处理(清洗、转化、提取、计算),如果使用FineBI之类的BI工具来处理的话就是先抽取数据、ETL处理数据,然后在前端多维度分析,并对分析结果进行可视化,最后形成一个完整的分析报告,到此,一个数据分析的工作才算正式完成。
3、 不知道怎样去分析?(分析方法)
分析目的明确了,数据也有了,但面对大量的、复杂的数据,却无从下手,不知道怎样分析,这是由于分析者缺乏对分析方法的了解。
数据分析最核心的工作,就是对数据进行分析。围绕业务问题,采用什么样的分析方法,使用什么样的分析模型,选择什么样的分析工具,这是数据分析的核心。这是分析师的必备技能。
为了便于理解,我将数据分析分为三个层次,从低到高,由浅入深,分别是统计分析,基本分析,数据挖掘。
一般情况下,企业有80%的工作都只需要掌握统计分析方法就可以了,剩下20%的工作需要更深入的分析及挖掘。当然,更深层次的业务规律及业务模式,需要更高层次的数据分析来解决。比如,市场细分,客户特征提取,等等。
4、 看不明白分析结果?(数据解读)
好不容易分析有结果了,统计有数据了,但是,这些数据及分析结果表示什么意思呢?与我们的业务有什么关系呢?这一步也不知道坑了多少学员。
对数据不敏感,解读数据的能力差,无法将分析结果与业务问题和业务策略关联起来,这是数据应用的最大障碍。
如何来解读数据,解读分析结果,这需要有一定的数据解读方法,也需要分析师要了解相应的业务逻辑。
5、 不知道分析是否全面?(分析思路)
我经常收到一些分析师的抱怨,他们说,基本的分析我都会了,但是,每次提交分析报告给领导以后,领导总是不太满意,说我分析不全面,漏此漏那的。分析不全面,这是由于缺乏分析思路导致的。
如果说,分析方法是从微观从细节来对数据进行分析,那么,分析思路,就是从宏观角度指导如何进行数据分析,比如从哪几个方面来进行完整的数据分析而不会遗漏。
要掌握分析思路,需要分析师懂业务、懂管理、懂营销。比如,如果要分析企业的外部环境,你必须要懂得PEST模型,即要从政策、经济、社会和技术四个方面来进行分析,否则就是不全面的;如果要做竞争分析,你需要懂得SWOT、波特五力,从这几个方面来分析竞争态势,才算完整和系统。
最简单,最实用的是5W2H模型,广泛用于企业营销活动、用户行为分析等专题分析中,即要求分析的从下面7个方面来进行分析,这样可以确保能够将用户购买行为分析完整、系统。
数据分析看起来很简单,但如果没有经过系统的培训,要胜任这项工作也是不容易的。毕竟,数据分析师作为企业主管的智囊,作为主管决策的支撑,其重要性及高要求是不言而喻。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04