京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优秀数据分析团队应该做好这些事情
Q:数据分析团队如何给自己找活干?
当业务部门没有提出分析想法,各方面数据看板已经做得很完善的情况下。数据分析团队如何给自己找活干,面对那么多业务部门,如何从一个部门下手再贯穿所有部门?
根据我的了解,题主的工作内容是偏数据工程师一点的,不过题目是问的是数据分析团队,所以就我有限的见识,抛砖引玉讨论一下数据分析团队如何给自己找活儿干。
为方便说明,这里以知乎为假想例子(也就是说都是我瞎掰的)。
比如说以用户注册过程为例,主要包括潜在用户通过某种方式到达知乎注册页面(比如说搜索,或者朋友圈分享的答案、文章),开始注册流程(邮箱注册?电话注册?),注册成功之后的一系列动作,比如关注了哪些话题、是否更新个人资料,是否有进一点互动(比如说点赞或者答题)等
数据报表 (dashboard report)
题主提到“各方面数据看板已经做得很完善”,那么可以试着从以下几个方面入手?
a. 不同维度的完善
比如说现在报表包括了注册整个过程的数据,那么是否有按用户性别、年龄等,地点(国家),使用设备(Andriod, iOS 等),来源(搜索引擎?朋友圈分享?微博分享?),注册方法(手机号?邮箱?)等来做分类呢?
b. 数据的时间精度
我们知道微信公众号是提供每天的数据追踪的,如果能够有更精细一点的数据,比如说按小时的,是否会提供更多的信息呢?以上面知乎注册数据为例,有每天的数据当然很好,但是假设现在半夜 12 点突然因为某些原因不能通过手机号注册了,而且只是在页面端有这个问题。如果没有时间精度更高的数据,而只能看每天的话,那类似这样的问题可能就没法发现或者需要过一两天才能发现了。
类似的,比如知乎日报想看每天几点推送效果更好,可以尝试在不同的时间段推送,然后看每天的阅读量、互动等,但是如果能够实时看推送之后的效果,自然比看每天的数据更有说服力。
c. 数据的完善度
理论上来说数据永远只能部分代表实际情况的,不可能把所有情况都一一记录下来。比如说在记录用户注册的过程中,是否记录了用户注册失败的情况?比如说用户名已经存在?用户名已经存在的情况下,是用户忘了密码呢?还是本来应该点登录的,结果点成注册导致失败了?注册失败之后下一步动作是什么?假如有这些数据,可以带来什么分析结果?
d. 数据的可靠性
数据并不总是 100% 可靠的,那么如何提高这个可靠性?如果建立一个大家都可以用、都可以信任的数据系统?当然这更多是属于数据工程师的活儿,跟数据分析有点差别。但是另一方面来说,数据分析过程中也是可以发现一些数据存在的问题,提供反馈进一步改进的。
开拓性数据分析
有完善的数据报表是一件很好的事情,但是绝不能止步于此。
a. 给业务团队提供方向
业务团队应该有自己的想法接下来应该做什么,或者说至少有个大致的想法,同时数据分析在这里也能起到很重要的作用,有时候是确定哪些项目比较重要,影响力比较大,有时候是找到新的方向。
比如通过数据发现,注册错误里有一部分是因为用了海外的手机号,导致无法收到确认码,那么就可以考虑如果解决这个问题了。还有一部分是因为用的邮箱收不到确认邮件导致注册失败。假设现在工程团队资源有限,只能干其中一个,如何确定优先级?
再比如说数据分析发现很多文章浏览量来源于微信朋友圈,那么添加通过微信登陆的功能,有什么好处,又有什么坏处?
b. 了解用户
数据分析可以改进产品,很多时候可以通过分析用户的行为来得到一些想法。比如说对比一下文章和答案的赞数和评论数会发现,有一些文章和答案的评论数/赞数非常高,说明在评论里有很多互动,但是赞同文章的人却很少。再进一步分析可能发现,有时候是因为读者强烈反对文章或者答案,所以评论区很热闹,有时候是因为大家在评论区里聊天,如此种种。那么这些信号是否能够用在知乎时间线的排序上?是否有必要给文章也增加“反对”的按纽?是否有必要给评论也排序而非单纯的按照时间来?
c. 设定目标
跑过马拉松的人可能都了解领跑者的重要性(我没跑过,别问我怎么知道的),因为有人在前面带节奏,跟着合适的目标按照适合自己的节奏跑就可以了,不至太快跟不上,也不至于太慢而没有发挥自己的潜力。
数据分析也可以起到类似的作用,给团队设定一个合适的目标,而不是脑袋一拍,能不能完成天知道的。有时候目标设得太高,团队拼死拼活也完不成,有时候又目标太低,不能发挥团队的潜力。
数据基础架构 (data infrastructure)
这方面可能也更多的是数据工程师的职责,不过数据分析团队也是可以在其中发挥一定的作用的。
a. 方便团队做测试
比如说是否有系统能让工程师们方便的做测试,不需要专门的人来做 A/B 测试的数据分析?
b. 方便团队使用数据
比如说产品经理要看这周和上周的对比,一些常用的数据是否可以直接有报表呈现。如果有某个特定的方面需要进一点查看的,是否有好用的 UI 点几下就可以?如果产品出现什么问题(比如说注册页面挂了),是否有系统能够及时报警,并且能够快速查明原因?
c. 自动化分析
比如说写个程序把一些常用的分析过程给自动化了?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10