
优秀数据分析团队应该做好这些事情
Q:数据分析团队如何给自己找活干?
当业务部门没有提出分析想法,各方面数据看板已经做得很完善的情况下。数据分析团队如何给自己找活干,面对那么多业务部门,如何从一个部门下手再贯穿所有部门?
根据我的了解,题主的工作内容是偏数据工程师一点的,不过题目是问的是数据分析团队,所以就我有限的见识,抛砖引玉讨论一下数据分析团队如何给自己找活儿干。
为方便说明,这里以知乎为假想例子(也就是说都是我瞎掰的)。
比如说以用户注册过程为例,主要包括潜在用户通过某种方式到达知乎注册页面(比如说搜索,或者朋友圈分享的答案、文章),开始注册流程(邮箱注册?电话注册?),注册成功之后的一系列动作,比如关注了哪些话题、是否更新个人资料,是否有进一点互动(比如说点赞或者答题)等
数据报表 (dashboard report)
题主提到“各方面数据看板已经做得很完善”,那么可以试着从以下几个方面入手?
a. 不同维度的完善
比如说现在报表包括了注册整个过程的数据,那么是否有按用户性别、年龄等,地点(国家),使用设备(Andriod, iOS 等),来源(搜索引擎?朋友圈分享?微博分享?),注册方法(手机号?邮箱?)等来做分类呢?
b. 数据的时间精度
我们知道微信公众号是提供每天的数据追踪的,如果能够有更精细一点的数据,比如说按小时的,是否会提供更多的信息呢?以上面知乎注册数据为例,有每天的数据当然很好,但是假设现在半夜 12 点突然因为某些原因不能通过手机号注册了,而且只是在页面端有这个问题。如果没有时间精度更高的数据,而只能看每天的话,那类似这样的问题可能就没法发现或者需要过一两天才能发现了。
类似的,比如知乎日报想看每天几点推送效果更好,可以尝试在不同的时间段推送,然后看每天的阅读量、互动等,但是如果能够实时看推送之后的效果,自然比看每天的数据更有说服力。
c. 数据的完善度
理论上来说数据永远只能部分代表实际情况的,不可能把所有情况都一一记录下来。比如说在记录用户注册的过程中,是否记录了用户注册失败的情况?比如说用户名已经存在?用户名已经存在的情况下,是用户忘了密码呢?还是本来应该点登录的,结果点成注册导致失败了?注册失败之后下一步动作是什么?假如有这些数据,可以带来什么分析结果?
d. 数据的可靠性
数据并不总是 100% 可靠的,那么如何提高这个可靠性?如果建立一个大家都可以用、都可以信任的数据系统?当然这更多是属于数据工程师的活儿,跟数据分析有点差别。但是另一方面来说,数据分析过程中也是可以发现一些数据存在的问题,提供反馈进一步改进的。
开拓性数据分析
有完善的数据报表是一件很好的事情,但是绝不能止步于此。
a. 给业务团队提供方向
业务团队应该有自己的想法接下来应该做什么,或者说至少有个大致的想法,同时数据分析在这里也能起到很重要的作用,有时候是确定哪些项目比较重要,影响力比较大,有时候是找到新的方向。
比如通过数据发现,注册错误里有一部分是因为用了海外的手机号,导致无法收到确认码,那么就可以考虑如果解决这个问题了。还有一部分是因为用的邮箱收不到确认邮件导致注册失败。假设现在工程团队资源有限,只能干其中一个,如何确定优先级?
再比如说数据分析发现很多文章浏览量来源于微信朋友圈,那么添加通过微信登陆的功能,有什么好处,又有什么坏处?
b. 了解用户
数据分析可以改进产品,很多时候可以通过分析用户的行为来得到一些想法。比如说对比一下文章和答案的赞数和评论数会发现,有一些文章和答案的评论数/赞数非常高,说明在评论里有很多互动,但是赞同文章的人却很少。再进一步分析可能发现,有时候是因为读者强烈反对文章或者答案,所以评论区很热闹,有时候是因为大家在评论区里聊天,如此种种。那么这些信号是否能够用在知乎时间线的排序上?是否有必要给文章也增加“反对”的按纽?是否有必要给评论也排序而非单纯的按照时间来?
c. 设定目标
跑过马拉松的人可能都了解领跑者的重要性(我没跑过,别问我怎么知道的),因为有人在前面带节奏,跟着合适的目标按照适合自己的节奏跑就可以了,不至太快跟不上,也不至于太慢而没有发挥自己的潜力。
数据分析也可以起到类似的作用,给团队设定一个合适的目标,而不是脑袋一拍,能不能完成天知道的。有时候目标设得太高,团队拼死拼活也完不成,有时候又目标太低,不能发挥团队的潜力。
数据基础架构 (data infrastructure)
这方面可能也更多的是数据工程师的职责,不过数据分析团队也是可以在其中发挥一定的作用的。
a. 方便团队做测试
比如说是否有系统能让工程师们方便的做测试,不需要专门的人来做 A/B 测试的数据分析?
b. 方便团队使用数据
比如说产品经理要看这周和上周的对比,一些常用的数据是否可以直接有报表呈现。如果有某个特定的方面需要进一点查看的,是否有好用的 UI 点几下就可以?如果产品出现什么问题(比如说注册页面挂了),是否有系统能够及时报警,并且能够快速查明原因?
c. 自动化分析
比如说写个程序把一些常用的分析过程给自动化了?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27