京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS信用评分九步曲之第一步数据清洗
累积了一段时间的建模经验了,这次想把我在建模中用的代码分批分享出来,可能写的东西不是你能用到的,毕竟我们接触到的数据都不一样。但是譬如文本清洗之类的,看我之前的文章“正则式”还是可以找到解决方法的。我觉得数据面并不多,就是就我现有的数据做的数据处理。希望大神也可以指正我在建模中用的不恰当的处理数据的方式。那么就开始今天的分享啦。
今天主要想分享给大家的有三个代码:“缺失值填充”,“变量缺失值比例”“异常值检测”。
1、缺失值填充
缺失值补充这部分的代码是我在遇到譬如主表的数据是有的,但是left join的时候没有这个数据,但是他并不是缺失,只是客户真的没有。譬如房屋贷款笔数,假设客户没有房屋贷款,那么这个变量就是缺失的,但是他并不是缺失,他实际上没有,所以要填补一个零。这段代码是对数值的字符的整张数据集的变量的处理。
%macro missing(data);
data aa;
set &data;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
do i = 1 to dim(arr1);
if missing(arr1(I)) then do;
arr1(i)=0;
/*这里的arr1(i)=0;根据自己的需要,要0就是0也可以是别的值*/
end;
if missing(arr1(i)) then do;
arr1(i)=0;
end;
end;
do i = 1 to dim(arr2);
if missing(arr2(I)) then do;
arr2(i)="0";
end;
end;
run;
%mend;
Data填入数据集
代码我都是调试好的,所以可以直接用。
2、变量缺失值比例
经过缺失值填补之后,但是还有些改缺失还是缺失的,这时候要对变量做变量缺失率的检查,我这边是对于变量缺失率达到70%的就去掉这个变量。具体缺失比率在多少就不要,还是要看自己的业务需求。那上代码吧。这部分的代码是参考另外这个公众号的妹纸写的代码公众号是:数据分析sas和r和python。
data tmp11;
set raw.jxl_total_t;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i));/*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
proc sql noprint;
select count(*) into : N from raw.jxl_total_t;
create table miss as
select variable label = "缺失变量名",
count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),'%'),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable
having percent>70;
quit;
/*统计缺失频数和占比*/
3、异常值检测
剔掉缺失严重的变量,那么下一步就是做异常值的检查,不要让异常值坏了拟合结果,毕竟数据也是存在一颗老鼠屎坏了一锅粥。异常值我之前在前面的文章中有用到聚类,有3倍标准差,聚类的话可能对于字符变量可能好些,3倍标准差的话需要要求数据呈正态分布,但是我的数据貌似很难达到这个需求。如果需要以上提及的聚类或者是3倍标准差可以点:路径查看啦。那么一下这段代码我用的箱形图来找出异常值,并且将在区域以外的数据集用上下界的值代替。分享的代码没有固定的iqr,写的条件譬如,异常值都在1.5倍iqr达到1%,那么就将这部分的值判断为异常值,假设现在是3iqr外的异常值达到1%或者小于1%,但是2.5iqr以外的数据已经达到了1.5%,那么就行选定3iqr以外的数据为异常值。异常值检查只针对数值变量。我是不是废话很多,我很怕你们理解不了我的意思,如果不知道iqr是什么的,先百度下拉。接下来上代码。
%macro pub(data,var);
PROC UNIVARIATE DATA= &data.(where=(&var.^=.)) NOprint;
VAR &var.;
OUTPUT OUT=qdata Q1=q1 Q3=q3 QRANGE=iqr STD=VSTD Mean=VMean;
RUN;
DATA _null_;
SET qdata;
call symput('STD', VSTD);
call symput('Mean', VMean);
CALL SYMPUT("q1",q1);
CALL SYMPUT("q3",q3);
CALL SYMPUT("iqr",compress(iqr));
RUN;
%let qa=%sysevalf(&q1. -(1.5*&iqr.));
%let qb=%sysevalf(&q3. +(1.5*&iqr.));
%let qc=%sysevalf(&q1. -(2*&iqr.));
%let q4=%sysevalf(&q3. +(2*&iqr.));
%let q5=%sysevalf(&q1. -(2.5*&iqr.));
%let q6=%sysevalf(&q3. +(2.5*&iqr.));
%let q7=%sysevalf(&q1. -(3*&iqr.));
%let q8=%sysevalf(&q3. +(3*&iqr.));
%put &q1.&q8.;
DATA outliers;
SET &data.(where=(&var.^=.));
LENGTH severity $2;
severity="";
IF &var. <= &qa. OR &var. >= &qb. THEN severity="1";
else IF &var. <= &qc. OR &var. >= &q4. THEN severity="2";
else IF &var. <= &q5. OR &var. >= &q6. THEN severity="3";
else IF &var. <= &q7. OR &var. >= &q8. THEN severity="4";
IF severity in ("1","2","3","4") THEN OUTPUT outliers;
RUN;
proc sql;
%do f=1 %to 4;
select count(*) into:outliers_&f. from outliers where severity="&f.";
%end;
select count(*) into :n from &data.;
quit;
%put &outliers_1. &outliers_2.;
%put &n.;
%let out_1=%sysevalf(&outliers_1./&n.);
%let out_2=%sysevalf(&outliers_2./&n.);
%let out_3=%sysevalf(&outliers_3./&n.);
%let out_4=%sysevalf(&outliers_4./&n.);
data &data.;
set &data.;
length &var._1 8.;
if &out_1.<0.01 and &var.^=. then do;
if &var. <=&qa. then &var._1=0;
else if &var. >=&qb. then &var._1=&qb.;
else &var._1=&var.;
end;
if &out_2.<0.01 and &var.^=. then do;
if &var. <=&qc. then &var._1=0;
else if &var. >=&q4. then &var._1=&q4.;
else &var._1=&var.;
end;
if &out_3.<0.01 and &var.^=. then do;
if &var. <=&q5. then &var._1=0;
else if &var. >=&q6. then &var._1=&q6.;
else &var._1=&var.;
end;
if &out_4.<0.01 and &var.^=. then do;
if &var. <=&q7. then &var._1=0;
else if &var. >=&q8. then &var._1=&q8.;
else &var._1=&var.;
end;
else do ;
&var._1=. ;
end;
drop &var. ;
rename &var._1=&var. ;
run;
%mend;
pub(data,var) data填入数据集,var填入你要检测的变量。
代码中有很多可以优化地方,譬如那些重复的东西就可以用循环的,你问我为什么不用,是因为我懒得改了,如果你想自己优化一下,就自己优化一下吧。如果我后续优化了,再分享给你们也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12