
SAS信用评分九步曲之第一步数据清洗
累积了一段时间的建模经验了,这次想把我在建模中用的代码分批分享出来,可能写的东西不是你能用到的,毕竟我们接触到的数据都不一样。但是譬如文本清洗之类的,看我之前的文章“正则式”还是可以找到解决方法的。我觉得数据面并不多,就是就我现有的数据做的数据处理。希望大神也可以指正我在建模中用的不恰当的处理数据的方式。那么就开始今天的分享啦。
今天主要想分享给大家的有三个代码:“缺失值填充”,“变量缺失值比例”“异常值检测”。
1、缺失值填充
缺失值补充这部分的代码是我在遇到譬如主表的数据是有的,但是left join的时候没有这个数据,但是他并不是缺失,只是客户真的没有。譬如房屋贷款笔数,假设客户没有房屋贷款,那么这个变量就是缺失的,但是他并不是缺失,他实际上没有,所以要填补一个零。这段代码是对数值的字符的整张数据集的变量的处理。
%macro missing(data);
data aa;
set &data;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
do i = 1 to dim(arr1);
if missing(arr1(I)) then do;
arr1(i)=0;
/*这里的arr1(i)=0;根据自己的需要,要0就是0也可以是别的值*/
end;
if missing(arr1(i)) then do;
arr1(i)=0;
end;
end;
do i = 1 to dim(arr2);
if missing(arr2(I)) then do;
arr2(i)="0";
end;
end;
run;
%mend;
Data填入数据集
代码我都是调试好的,所以可以直接用。
2、变量缺失值比例
经过缺失值填补之后,但是还有些改缺失还是缺失的,这时候要对变量做变量缺失率的检查,我这边是对于变量缺失率达到70%的就去掉这个变量。具体缺失比率在多少就不要,还是要看自己的业务需求。那上代码吧。这部分的代码是参考另外这个公众号的妹纸写的代码公众号是:数据分析sas和r和python。
data tmp11;
set raw.jxl_total_t;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i));/*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
proc sql noprint;
select count(*) into : N from raw.jxl_total_t;
create table miss as
select variable label = "缺失变量名",
count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),'%'),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable
having percent>70;
quit;
/*统计缺失频数和占比*/
3、异常值检测
剔掉缺失严重的变量,那么下一步就是做异常值的检查,不要让异常值坏了拟合结果,毕竟数据也是存在一颗老鼠屎坏了一锅粥。异常值我之前在前面的文章中有用到聚类,有3倍标准差,聚类的话可能对于字符变量可能好些,3倍标准差的话需要要求数据呈正态分布,但是我的数据貌似很难达到这个需求。如果需要以上提及的聚类或者是3倍标准差可以点:路径查看啦。那么一下这段代码我用的箱形图来找出异常值,并且将在区域以外的数据集用上下界的值代替。分享的代码没有固定的iqr,写的条件譬如,异常值都在1.5倍iqr达到1%,那么就将这部分的值判断为异常值,假设现在是3iqr外的异常值达到1%或者小于1%,但是2.5iqr以外的数据已经达到了1.5%,那么就行选定3iqr以外的数据为异常值。异常值检查只针对数值变量。我是不是废话很多,我很怕你们理解不了我的意思,如果不知道iqr是什么的,先百度下拉。接下来上代码。
%macro pub(data,var);
PROC UNIVARIATE DATA= &data.(where=(&var.^=.)) NOprint;
VAR &var.;
OUTPUT OUT=qdata Q1=q1 Q3=q3 QRANGE=iqr STD=VSTD Mean=VMean;
RUN;
DATA _null_;
SET qdata;
call symput('STD', VSTD);
call symput('Mean', VMean);
CALL SYMPUT("q1",q1);
CALL SYMPUT("q3",q3);
CALL SYMPUT("iqr",compress(iqr));
RUN;
%let qa=%sysevalf(&q1. -(1.5*&iqr.));
%let qb=%sysevalf(&q3. +(1.5*&iqr.));
%let qc=%sysevalf(&q1. -(2*&iqr.));
%let q4=%sysevalf(&q3. +(2*&iqr.));
%let q5=%sysevalf(&q1. -(2.5*&iqr.));
%let q6=%sysevalf(&q3. +(2.5*&iqr.));
%let q7=%sysevalf(&q1. -(3*&iqr.));
%let q8=%sysevalf(&q3. +(3*&iqr.));
%put &q1.&q8.;
DATA outliers;
SET &data.(where=(&var.^=.));
LENGTH severity $2;
severity="";
IF &var. <= &qa. OR &var. >= &qb. THEN severity="1";
else IF &var. <= &qc. OR &var. >= &q4. THEN severity="2";
else IF &var. <= &q5. OR &var. >= &q6. THEN severity="3";
else IF &var. <= &q7. OR &var. >= &q8. THEN severity="4";
IF severity in ("1","2","3","4") THEN OUTPUT outliers;
RUN;
proc sql;
%do f=1 %to 4;
select count(*) into:outliers_&f. from outliers where severity="&f.";
%end;
select count(*) into :n from &data.;
quit;
%put &outliers_1. &outliers_2.;
%put &n.;
%let out_1=%sysevalf(&outliers_1./&n.);
%let out_2=%sysevalf(&outliers_2./&n.);
%let out_3=%sysevalf(&outliers_3./&n.);
%let out_4=%sysevalf(&outliers_4./&n.);
data &data.;
set &data.;
length &var._1 8.;
if &out_1.<0.01 and &var.^=. then do;
if &var. <=&qa. then &var._1=0;
else if &var. >=&qb. then &var._1=&qb.;
else &var._1=&var.;
end;
if &out_2.<0.01 and &var.^=. then do;
if &var. <=&qc. then &var._1=0;
else if &var. >=&q4. then &var._1=&q4.;
else &var._1=&var.;
end;
if &out_3.<0.01 and &var.^=. then do;
if &var. <=&q5. then &var._1=0;
else if &var. >=&q6. then &var._1=&q6.;
else &var._1=&var.;
end;
if &out_4.<0.01 and &var.^=. then do;
if &var. <=&q7. then &var._1=0;
else if &var. >=&q8. then &var._1=&q8.;
else &var._1=&var.;
end;
else do ;
&var._1=. ;
end;
drop &var. ;
rename &var._1=&var. ;
run;
%mend;
pub(data,var) data填入数据集,var填入你要检测的变量。
代码中有很多可以优化地方,譬如那些重复的东西就可以用循环的,你问我为什么不用,是因为我懒得改了,如果你想自己优化一下,就自己优化一下吧。如果我后续优化了,再分享给你们也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13