
为何说大数据是“看得见的生产力”(1)
有人曾说,未来社会是数据社会;就连阿里巴巴也标榜自己不是电商,而是大数据公司。近日,国务院又刚刚印发《促进大数据发展行动纲要》,提出未来5至10年大数据发展和应用目标。
记者采访了国家“千人计划”专家、北京百分点信息科技有限公司创始人苏萌。作为从事大数据研究和创业多年的学者型企业家,在他眼里,这些“看不见的大数据”,有着“看得见的生产力”。
大数据把消费者送到商家“碗里来”
还能不能让人安静的工作?作为一个网络时代的消费者,你可能经常会有这样的经历:忽然有一天心血来潮,特别想买一台微单相机,可是在购物网站上看了半个多小时,还是没有下单的决心,毕竟不是一个小数目。接着你会发现,在未来几天上网时,很多网站的插入广告都会向你推荐那几款曾经让你犹豫不决的微单相机,有时候还会推荐一些功能和价格相似,但你却从来没有点击查看过的品牌,引诱你每天都点进去看一下。经过几天甚至几周的犹豫,你终于决定下单。
“这就是创业初期几年我们在做的事情,成立一家基于大数据的个性化推荐引擎技术公司,帮电商发现用户的潜在需求,变被动接受用户为主动了解用户。”苏萌介绍,对于大多数中小型电商而言,虽然掌握着大量的用户数据,但是却并不知道如何去有效应用和分析,将数据转化为生产力也就更加无从谈起。
随着电商之间的竞争加剧,大数据技术公司的存在价值和专业性也就体现出来了。苏萌表示,“通过对电商用户数据的分析建立数据模型,分析消费者的行为轨迹,能够知道那个用户更关心价格,哪个用户更关注性能或外观,帮商家找到最佳的商品推荐模式,尽量减少无效推荐。”在他看来,做到推荐容易,但是做到精准的个性化推荐则很难,对大数据公司的技术能力要求也就越来越高。
(图片来自网络)
大数据让传统企业成为用户“肚子里的蛔虫”
如果认为只有互联网企业需要大数据服务那就错了,因为越来越多的企业认识到,发展到最后所有的企业都会成为数字企业,能够挖掘自身数据的价值,决定着企业运营和发展。
“然而,对大多数传统企业来说,普遍缺乏对大数据价值的认识,造成数据散落,数据管理技术薄弱,缺少数据应用,在业务发展中,往往偏向于经验主义而非精准的数据分析。”如今,苏萌感受到,越来越多的传统企业意识到数据的价值,因此就给了专业大数据公司与传统企业合作的契机。
通过与一些3C产品生产企业和汽车制造企业的合作,苏萌意识到,为传统企业实现其用户的标签化至关重要。传统企业不像互联网企业,它需要大数据企业提供给业务人员的是直接的信息指导,来帮助企业的日程运营,对企业的销售和服务提供直接建议。
“大数据分析能为企业建立一个独有的‘标签工厂’,通过将繁复的用户数据高度提炼成一些短语,给用户打上一个个标签,成为用户的身份标示。”苏萌解释,如此一来,企业就像成了用户肚子里的蛔虫。比如,促销活动还没有开始,企业就能知道哪些老用户和目标用户对哪种信息更加敏感,更容易出现购买倾向。用户的数据标签在售后领域也能够有效发挥作用,当售后人员接到用户投诉电话时,能够迅速掌握用户的行为特点,提供更具针对性的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10