
一、分类算法中的损失函数
在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式:
其中,L(mi(w))为损失项,R(w)为正则项。mi的具体形式如下:
对于损失项,主要的形式有:
0-1损失
Log损失
Hinge损失
指数损失
感知损失
1、0-1损失函数
在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值fw(x(i))与真实值y(i)的符号是否相同,0-1损失的具体形式如下:
以上的函数等价于下述的函数:
0-1损失并不依赖m值的大小,只取决于m的正负号。0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。
Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下:
运用Log损失的典型分类器是Logistic回归算法。
对于Logistic回归算法,分类器可以表示为:
为了求解其中的参数w,通常使用极大似然估计的方法,具体的过程如下:
1、似然函数
其中,
2、log似然
3、需要求解的是使得log似然取得最大值的w。将其改变为最小值,可以得到如下的形式:
由于Log损失的具体形式为:
Logistic回归与Log损失具有相同的形式,故两者是等价的。Log损失与0-1损失的关系可见下图。
Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下:
运用Hinge损失的典型分类器是SVM算法。
对于软间隔支持向量机,允许在间隔的计算中出现少许的误差,其优化的目标为:
约束条件为:
对于Hinge损失:
优化的目标是要求:
在上述的函数中引入截距γ,即:
并在上述的最优化问题中增加L2正则,即变成:
至此,令下面的不等式成立:
约束条件为
则Hinge最小化问题变成:
约束条件为:
这与软间隔的SVM是一致的,说明软间隔SVM是在Hinge损失的基础上增加了L2正则。
指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下:
运用指数损失的典型分类器是AdaBoost算法。
AdaBoost算法是对每一个弱分类器以及每一个样本都分配了权重,对于弱分类器φj的权重为:
其中,表示的是误分类率。对于每一个样本的权重为:
最终通过对所有分类器加权得到最终的输出。
对于指数损失函数:
可以得到需要优化的损失函数:
假设f~表示已经学习好的函数,则有:
而:
通过最小化φ,可以得到:
将其代入上式,进而对θ求最优解,得:
其中,
可以发现,其与AdaBoost是等价的。
5、感知损失
5.1、感知损失
感知损失是Hinge损失的一个变种,感知损失的具体形式如下:
运用感知损失的典型分类器是感知机算法。
感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为:
对于感知损失:
优化的目标为:
在上述的函数中引入截距b,即:
上述的形式转变为:
对于max函数中的内容,可知:
对于错误的样本,有:
类似于Hinge损失,令下式成立:
约束条件为:
则感知损失变成:
即为:
Hinge损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。数据分析师培训
import matplotlib.pyplot as plt
import numpy as np
xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss")
plt.plot(xx, np.exp(-xx), 'c-', label="Exponential loss")
plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14