
一、分类算法中的损失函数
在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式:
其中,L(mi(w))为损失项,R(w)为正则项。mi的具体形式如下:
对于损失项,主要的形式有:
0-1损失
Log损失
Hinge损失
指数损失
感知损失
1、0-1损失函数
在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值fw(x(i))与真实值y(i)的符号是否相同,0-1损失的具体形式如下:
以上的函数等价于下述的函数:
0-1损失并不依赖m值的大小,只取决于m的正负号。0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。
Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下:
运用Log损失的典型分类器是Logistic回归算法。
对于Logistic回归算法,分类器可以表示为:
为了求解其中的参数w,通常使用极大似然估计的方法,具体的过程如下:
1、似然函数
其中,
2、log似然
3、需要求解的是使得log似然取得最大值的w。将其改变为最小值,可以得到如下的形式:
由于Log损失的具体形式为:
Logistic回归与Log损失具有相同的形式,故两者是等价的。Log损失与0-1损失的关系可见下图。
Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下:
运用Hinge损失的典型分类器是SVM算法。
对于软间隔支持向量机,允许在间隔的计算中出现少许的误差,其优化的目标为:
约束条件为:
对于Hinge损失:
优化的目标是要求:
在上述的函数中引入截距γ,即:
并在上述的最优化问题中增加L2正则,即变成:
至此,令下面的不等式成立:
约束条件为
则Hinge最小化问题变成:
约束条件为:
这与软间隔的SVM是一致的,说明软间隔SVM是在Hinge损失的基础上增加了L2正则。
指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下:
运用指数损失的典型分类器是AdaBoost算法。
AdaBoost算法是对每一个弱分类器以及每一个样本都分配了权重,对于弱分类器φj的权重为:
其中,表示的是误分类率。对于每一个样本的权重为:
最终通过对所有分类器加权得到最终的输出。
对于指数损失函数:
可以得到需要优化的损失函数:
假设f~表示已经学习好的函数,则有:
而:
通过最小化φ,可以得到:
将其代入上式,进而对θ求最优解,得:
其中,
可以发现,其与AdaBoost是等价的。
5、感知损失
5.1、感知损失
感知损失是Hinge损失的一个变种,感知损失的具体形式如下:
运用感知损失的典型分类器是感知机算法。
感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为:
对于感知损失:
优化的目标为:
在上述的函数中引入截距b,即:
上述的形式转变为:
对于max函数中的内容,可知:
对于错误的样本,有:
类似于Hinge损失,令下式成立:
约束条件为:
则感知损失变成:
即为:
Hinge损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。数据分析师培训
import matplotlib.pyplot as plt
import numpy as np
xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss")
plt.plot(xx, np.exp(-xx), 'c-', label="Exponential loss")
plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27