
简单易学的机器学习算法—马尔可夫链蒙特卡罗方法MCMC
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)方法,其中Metropolis-Hastings采样和Gibbs采样是MCMC中使用较为广泛的两种形式。
MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。
一、马尔可夫链
1、马尔可夫链
设Xt表示随机变量X在离散时间t时刻的取值。若该变量随时间变化的转移概率仅仅依赖于它的当前取值,即
也就是说状态转移的概率只依赖于前一个状态。称这个变量为马尔可夫变量,其中,s0,s1,⋯,si,sj∈Ω为随机变量X可能的状态。这个性质称为马尔可夫性质,具有马尔可夫性质的随机过程称为马尔可夫过程。
马尔可夫链指的是在一段时间内随机变量X的取值序列(X0,X1,⋯,Xm),它们满足如上的马尔可夫性质。
2、转移概率
马尔可夫链是通过对应的转移概率定义的,转移概率指的是随机变量从一个时刻到下一个时刻,从状态si转移到另一个状态sj的概率,即:
记表示随机变量X在时刻t的取值为sk的概率,则随机变量X在时刻t+1的取值为si的概率为:
假设状态的数目为n,则有:
3、马尔可夫链的平稳分布
对于马尔可夫链,需要注意以下的两点:
1、周期性:即经过有限次的状态转移,又回到了自身;
2、不可约:即两个状态之间相互转移;
如果一个马尔可夫过程既没有周期性,又不可约,则称为各态遍历的。
对于一个各态遍历的马尔可夫过程,无论初始值π(0)取何值,随着转移次数的增多,随机变量的取值分布最终都会收敛到唯一的平稳分布π∗,即:
且这个平稳分布π∗满足:
其中,为转移概率矩阵。
二、马尔可夫链蒙特卡罗方法
1、基本思想
对于一个给定的概率分布P(X),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P的马尔可夫链,使得该马尔可夫链的平稳分布为P(X),这样,无论其初始状态为何值,假设记为x0,那么随着马尔科夫过程的转移,得到了一系列的状态值,如:x0,x1,x2,⋯,xn,xn+1,⋯,,如果这个马尔可夫过程在第n步时已经收敛,那么分布P(X)的样本即为xn,xn+1,⋯。
2、细致平稳条件
对于一个各态遍历的马尔可夫过程,若其转移矩阵为P,分布为π(x),若满足:
则π(x)是马尔可夫链的平稳分布,上式称为细致平稳条件。
3、Metropolis采样算法
Metropolis采样算法是最基本的基于MCMC的采样算法。
3.1、Metropolis采样算法的基本原理
假设需要从目标概率密度函数p(θ)中进行采样,同时,θ满足−∞<θ<∞。Metropolis采样算法根据马尔可夫链去生成一个序列:
其中,θ(t)表示的是马尔可夫链在第t代时的状态。
在Metropolis采样算法的过程中,首先初始化状态值θ(1),然后利用一个已知的分布生成一个新的候选状态θ(∗),随后根据一定的概率选择接受这个新值,或者拒绝这个新值,在Metropolis采样算法中,概率为:
这样的过程一直持续到采样过程的收敛,当收敛以后,样本θ(t)即为目标分布p(θ)中的样本。
3.2、Metropolis采样算法的流程
基于以上的分析,可以总结出如下的Metropolis采样算法的流程:
初始化时间t=1
设置u的值,并初始化初始状态θ(t)=u
重复一下的过程:
令t=t+1
从已知分布中生成一个候选状态θ(∗)
计算接受的概率:
从均匀分布Uniform(0,1)生成一个随机值a
如果a⩽α,接受新生成的值:θ(t)=θ(∗);否则:θ(t)=θ(t−1)
直到t=T
3.3、Metropolis算法的解释
要证明Metropolis采样算法的正确性,最重要的是要证明构造的马尔可夫过程满足如上的细致平稳条件,即:
对于上面所述的过程,分布为p(θ),从状态i转移到状态j的转移概率为:
其中,Qi,j为上述已知的分布。
对于选择该已知的分布,在Metropolis采样算法中,要求该已知的分布必须是对称的,即Qi,j=Qj,i,即
常用的符合对称的分布主要有:正态分布,柯西分布以及均匀分布等。
接下来,需要证明在Metropolis采样算法中构造的马尔可夫链满足细致平稳条件。
因此,通过以上的方法构造出来的马尔可夫链是满足细致平稳条件的。
3.4、实验
假设需要从柯西分布中采样数据,我们利用Metropolis采样算法来生成样本,其中,柯西分布的概率密度函数为:
那么,根据上述的Metropolis采样算法的流程,接受概率α的值为:
代码如下:
'''
Date:20160629
@author: zhaozhiyong
'''
import random
from scipy.stats import norm
import matplotlib.pyplot as plt
def cauchy(theta):
y = 1.0 / (1.0 + theta ** 2)
return y
T = 5000
sigma = 1
thetamin = -30
thetamax = 30
theta = [0.0] * (T+1)
theta[0] = random.uniform(thetamin, thetamax)
t = 0
while t < T:
t = t + 1
theta_star = norm.rvs(loc=theta[t - 1], scale=sigma, size=1, random_state=None)
#print theta_star
alpha = min(1, (cauchy(theta_star[0]) / cauchy(theta[t - 1])))
u = random.uniform(0, 1)
if u <= alpha:
theta[t] = theta_star[0]
else:
theta[t] = theta[t - 1]
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
plt.sca(ax1)
plt.ylim(thetamin, thetamax)
plt.plot(range(T+1), theta, 'g-')
plt.sca(ax2)
num_bins = 50
plt.hist(theta, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.show()数据分析师培训
实验的结果:
对于Metropolis采样算法,其要求选定的分布必须是对称的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10