
一、基于协同过滤的推荐系统
协同过滤(Collaborative Filtering)的推荐系统的原理是通过将用户和其他用户的数据进行比对来实现推荐的。比对的具体方法就是通过计算两个用户数据之间的相似性,通过相似性的计算来说明两个用户数据之间的相似程度。相似度函数的设计必须满足度量空间的三点要求,即非负性,对称性和三角不等性。常用的相似度的计算方法有:欧式距离法、皮尔逊相关系数法和夹角余弦相似度法。具体的可以参见上一篇文章“协同过滤推荐算法(1) ”。
二、面临的问题
在基本的协同过滤的推荐系统中(主要指上面所提到的基本模型中),我们是在整个空间上计算相似度,进而实现推荐的。但是现实中的数据往往并不是那么规整,普遍的现象就是在用户数据中出现很多未评分项,如下面所示的数据:
对于这样的稀疏矩阵,我们利用基本的协同过滤推荐算法的效率必将很低。对于这样的稀疏矩阵,我们可以利用SVD对其进行降维,将这样的稀疏矩阵映射到另一个具体的主题空间,SVD降维的原理可以参见博文“SVD奇异值分解”。
三、利用SVD构造主题空间
我们对上面所示的这样一个矩阵进行SVD分解,分解的结果为:
1、U矩阵
(U矩阵,矩阵U主要反应的是用户信息)
2、对角阵S
(S矩阵,矩阵S主要反映的是11个奇异值)
3、VT矩阵
(VT矩阵,矩阵VT主要反映的是物品信息)
4、选取奇异值并映射主题空间
奇异值分解公式为:,现在我们要将原始数据映射到反映物品的相互关系中。选取前5个奇异值,奇异值的选取符合能量的规则,选择出来的奇异值的能量要能反映90%的原始信息。这样新的主题空间的计算方式为:数据分析师培训
即可得新的主题空间:
四、实验的仿真
我们在这样的数据集上做推荐计算。其中user为2号用户。
(相似度的计算)
(推荐结果)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 主函数
% 导入数据
%data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0;5,5,5,0,0];
data = [2,0,0,4,4,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,5;0,0,0,0,0,0,0,1,0,4,0;3,3,4,0,3,0,0,2,2,0,0;5,5,5,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,5,0,0,5,0;4,0,4,0,0,0,0,0,0,0,5;0,0,0,0,0,4,0,0,0,0,4;0,0,0,0,0,0,5,0,0,5,0;0,0,0,3,0,0,0,0,4,5,0;
1,1,2,1,1,2,1,0,4,5,0];
% reccomendation
%[sortScore, sortIndex] = recommend(data, 3, 'cosSim');
[sortScore, sortIndex] = recommend(data, 2, 'cosSim');
len = size(sortScore);
finalRec = [sortIndex, sortScore];
disp(finalRec);
SVD空间映射的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ score ] = SVDEvaluate( data, user, simMeas, item )
[m,n] = size(data);
simTotal = 0;
ratSimTotal = 0;
% 奇异值分解
[U S V] = svd(data);
% 求使得保留90%能量的奇异值
sizeN = 0;%记录维数
[m_1,n_1] = size(S);
a = 0;%求总能量
for i = 1:m_1
a = a + S(i,i)*S(i,i);
end
b = a*0.9;%能量的90%
c = 0;
for i = 1:n_1
c = c + S(i,i)*S(i,i);
if c >= b
sizeN = i;
break;
end
end
%物品降维后的空间
itemTransformed = data' * U(:,1:sizeN) * S(1:sizeN,1:sizeN)^(-1);
for j = 1:n
userRating = data(user, j);%此用户评价的商品
if userRating == 0 || j == item%只是找到已评分的商品
continue;
end
vectorA = itemTransformed(item,:);
vectorB = itemTransformed(j,:);
switch simMeas
case {'cosSim'}
similarity = cosSim(vectorA,vectorB);
case {'ecludSim'}
similarity = ecludSim(vectorA,vectorB);
case {'pearsSim'}
similarity = pearsSim(vectorA,vectorB);
end
disp(['the ', num2str(item), ' and ', num2str(j), ' similarity is ', num2str(similarity)]);
simTotal = simTotal + similarity;
ratSimTotal = ratSimTotal + similarity * userRating;
end
if simTotal == 0
score = 0;
else
score = ratSimTotal./simTotal;
end
end
推荐的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ sortScore, sortIndex ] = recommend( data, user, simMeas )
% 获取data的大小
[m, n] = size(data);%m为用户,n为商品
if user > m
disp('The user is not in the dataBase');
end
% 寻找用户user未评分的商品
unratedItem = zeros(1,n);
numOfUnrated = 0;
for j = 1:n
if data(user, j) == 0
unratedItem(1,j) = 1;%0表示已经评分,1表示未评分
numOfUnrated = numOfUnrated + 1;
end
end
if numOfUnrated == 0
disp('the user has rated all items');
end
% 对未评分项打分,已达到推荐的作用
itemScore = zeros(numOfUnrated,2);
r = 0;
for j = 1:n
if unratedItem(1,j) == 1%找到未评分项
r = r + 1;
%score = evaluate(data, user, simMeas, j);
score = SVDEvaluate(data, user, simMeas, j);
itemScore(r,1) = j;
itemScore(r,2) = score;
end
end
%排序,按照分数的高低进行推荐
[sortScore, sortIndex_1] = sort(itemScore(:,2),'descend');
[numOfIndex,x] = size(sortIndex_1(:,1));
sortIndex = zeros(numOfIndex,1);
for m = 1:numOfIndex
sortIndex(m,:) = itemScore(sortIndex_1(m,:),1);
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27